
Differential Forms

Dane Jeon

I. ONE-FORMS AND VECTOR FIELDS

A. One-forms and vector fields

1. A one-form, or a differential one-form, on an open in-
terval in R1 is an expression of the form

ω = f(x) dx

with f : U → R1 being functions with continuous
derivatives (C∞ on U).

2. A one-form on an open subset in R2 is an expression
of the form

ω = f(x, y) dx+ g(x, y) dy

with f, g : U → R2 again being a function with contin-
uous (this time partial) derivatives (C∞ on U).

3. The sum and products of one-forms are also one-forms.

4. Vector fields on an open subset U ⊂ Rn is a function
F : U → Rn. A vector field is smooth if the component
functions are smooth.

5. There is a correspondence between one-forms and vec-
tor fields. Given a one-form, there is an associated
smooth vector field and vice-versa.

B. Exact one-forms and conservative vector fields

6. A differential of a function is a one-form on U.

df =
∂f

∂x
dx+

∂f

∂x
dx+

∂f

∂x
dx

7. The vector field associated to the differential df of a
function f is a vector field, namely ∇f .(

∂f

∂x
,
∂f

∂x
,
∂f

∂x

)

8. By setting f as x, we find that the placeholders dx, dy,
dz are differentials of the component functions x, y, z.

9. Like not all vector fields can be written as the gradient
of a function, not all one-forms are differentials of func-
tions. Such one-forms and vector fields pairs are special,
and hence have their own name: exact one-forms.

ω = df

10. On the other hand, a vector field is called conservative

if it is a gradient of a function.

F = ∇f

Here, f is called the potential of F.

11. A ”screening test” for checking whether a one-form is
exact is checking if it is closed, that is,

∂f

∂y
=

∂g

∂x

The role of the expression is clear, as Clairaut-Schwarz
theorem clearly states that partial derivatives commute
if they are continuous. Simply stated, if a function is
exact, it is closed.

12. A ”screening test” for conservative vector fields that
have continuously differentiable components would be
the following

∂f1
∂y

=
∂f2
∂x

12. A one-form on an open subset in R3 is closed if

∂f

∂y
=

∂g

∂x
,

∂f

∂z
=

∂h

∂x
,

∂g

∂z
=

∂h

∂y

13. Analogically, a ”screening test” for conservative vector
fields that have continuously differentiable would be

∂f1
∂y

=
∂f2
∂x

,
∂f1
∂z

=
∂f3
∂x

,
∂f2
∂z

=
∂f3
∂y

C. Changes of variables

14. For reparameterisation-invariance, we define one-
form transformations under the change of variable
x to t as

η =

(
f(x(t))

dx

dt

)
dt

15. The pullback of a function is the smooth function
defined as

ϕ ∗ f = f ◦ ϕ : V → R

and explicitly written, ϕ∗f(t) = f(ϕ(t)). The term
is justified by the fact that in the chain of maps
V →ϕ U →f R, we ”pull back” the function to a
function from V to R.
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16. The pullback of an one-form is the one-form defined
as

ϕ ∗ ω =

(
f(ϕ(t))

dϕ

dt

)
dt =

(
ϕ ∗ f(t)dϕ

dt

)
dt

D. The pullback of a one-form

17. The definition above can be further generalised in cases
where the function ϕ is multivariate vector function
(that is, V,U ∈ {1, 2, 3}) like the following

ϕ ∗ ω =

(
f(ϕ(t))

dϕ

dt

)
dt =

(
ϕ ∗ f(t)dϕ

dt

)
dt

and explicitly written, ϕ ∗ f(t) = f(ϕ(t)).

18. Important properties of one-forms were

1. If ω and η are one-forms, then ω + η is a one-form.

2. If ω is a one-form and f is a smooth function, then
fω is a one-form.

3. An exact one-form is one that can be written as a
differential of a function: ω = df

19. We then define the pullback axiomatically to be con-
sistent with these properties like the following

1. ϕ ∗ (ω + η) = ϕ ∗ ω + ϕ ∗ η

2. ϕ ∗ (fω) = (ϕ ∗ f)(ϕ ∗ ω)

3. ϕ ∗ (df) = d(ϕ ∗ f)

20. These definitions are sufficient to determine the pull-
back of any one-form. The pull back of dx is then

ϕ ∗ (dx) =
m∑
i=1

∂x

∂ti
dti

for m = 3,

ϕ ∗ (dx) = ∂x

∂t1
dt1 +

∂x

∂t2
dt2 +

∂x

∂t3
dt3

21. The pullback of an one-form is then generalised as

ϕ ∗ ω = f(ϕ(t))

m∑
i=1

∂x

∂ti
dti

+ g(ϕ(t))

m∑
i=1

∂y

∂ti
dti + h(ϕ(t))

m∑
i=1

∂z

∂ti
dti

II. INTEGRATING ONE-FORMS: LINE
INTEGRALS

A. Integrating a one-form over an interval

22. The integral of a one-form over [a, b], a ≤ b is de-
fined as

ˆ
[a,b]

ω =

ˆ b

a

f(x) dx

23. The orientation of an interval is a choice of direc-
tion. It can either be one of increasing numbers
([a, b]+) or decreasing numbers ([a, b]−). We define
the canonical orientation to be the orientation of
increasing real numbers.

24. The integral of a one-form over the oriented inter-
val [a, b]± is defined as the following

ˆ
[a,b]±

ω = ±
ˆ b

a

f(x) dx

25. Integrals of one-forms over intervals are invari-
ant under orientation-preserving reparametrisa-
tions. Given ϕ(c) = a and ϕ(d) = b,

ˆ
[c,d]

ϕ ∗ ω =

ˆ
[a,b]

ω

Explicitly,

ˆ d

c

f(ϕ(t))
dϕ

dt
dt =

ˆ b

a

f(x) dx

The substitution formula for definite integrals is
simply the statement that integrals of one-forms
over intervals are invariant under pullback.

26. Integrals of one-forms over intervals pick a sign un-
der orientation-reversing reparametrisations.

ˆ
[c,d]

ϕ ∗ ω =

ˆ
[a,b]−

ω = −
ˆ
[a,b]

ω

B. Parametric curves in R

27. Parametric curves

α : [a, b] → Rn

t 7→ α(t) = (x1(t), ..., xn(t))

28. Closed parametric curves are curves that don’t have
endpoints.
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29. The set ∂C = {α(a), α(b)} that consists of the end-
points of C is called the boundary of the curve.

30. The tangent vector or velocity vector to a parametric
curve

T : [a, b] → Rn

t 7→ T(t) = α′(t) = (x′
1(t), ..., x

′
n(t))

31. Orientation of a curve is given by the choice of direc-
tion of the curve.

32. Parametric curves are orientated where the direction
is given by the direction of the tangent vector at each
point on the curve.

33. Reparametrisations of a curve can be done through
pullbacks, where the following pullback is another
parametrisation of the same curve

ϕ ∗ α : [c, d] → Rn

u 7→ (ϕ ∗ x1(u), ..., ϕ ∗ xn(u)) = (x1(ϕ(u)), ..., xn(ϕ(u)))

To add, as dϕ/du is continuous and never zero (by defi-
nition) on [c, d], it is everywhere positive or everywhere
negative.

34. Orientation-preserving reparametrisations are cases in
which dϕ/du > 0 for all points.

35. Orientation-reversing reparametrisations are cases in
which dϕ/du < 0 for all points.

36. If a piecewise parametric curve is the union of a num-
ber of parametric curves, and each paramteric curve is
smooth, we call the piecewise paramteric curve piece-
wise smooth. Additionally, if the curve doesn’t intersect
itself, we call the curve simple.

C. Line integrals

37. The pull back of a one-form on an open subset in R2

α ∗ ω =

(
f(α(t))

dx

dt
+ g(α(t))

dy

dt

)
dt

38. The pull back of a one-form on an open subset in R3

α ∗ ω =

(
f(α(t))

dx

dt
+ g(α(t))

dy

dx
+ h(α(t))

dz

dt

)
dt

39. We can translate the language of differential forms into
the language of vector fields. If F is the associated vec-
tor field to ω,

α ∗ ω = (F(α(t)) ·T(t)) dt

38. Oriented line integral of a one-form along α

ˆ
α

ω =

ˆ
[a,b]

α ∗ ω

ˆ
α

ω =

ˆ b

a

(
f(α(t))

dx

dt
+ g(α(t))

dy

dt

)
dt

40. Line integrals over piecewise parametric curves can be
done simply by adding up the integrals of the individual
curves.

41. Line integrals are invariant under orientation-
preserving reparametrisations.

(i) If ϕ preserves orientation,

ˆ
α

ω =

ˆ
ϕ∗α

ω

(ii) If ϕ reverses orientation,

ˆ
α

ω = −
ˆ
ϕ∗α

ω

D. Fundamental theorem of line integrals

42. The fundamental theorem of line integrals. Let ω = df
be an exact one-form.ˆ

α

ω =

ˆ
α

df = f(α(b))− f(α(a))

43. The line integrals of an exact one-form along two
curves that start and end at the same points are equal.

44. The line integral of an exact one-form along a closed
curve vanishes.

45. The fundamental theorem of line integrals for vector
fields.

ˆ b

a

F(α(t)) ·T(t)dt =

ˆ b

a

∇f(α(t)) ·T(t)dt

= f(α(b))− f(α(a))

ˆ
c

F · dr =

ˆ
C

∇f · dr = f(r(a))− f(r(b))

E. Poincare’s lemma for one-forms

46. Poincare’s lemma, version I. ω is exact if and only if
ω is closed. In the language of vector calculus, F is
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conservative if and only if it is curl-free:

∇× F = 0

47. Equivalent formulations of exactness on Rn

1. ω is exact (F is conservative).

2. ω is closed (F passes the screening test).

3. The integral
´
α
ω = 0 for any closed parametric curve

α.

4. Line integrals of ω are path independent.

48. Poincare’s lemma, version II. Let ω be a one-form de-
fined on an open subset U ⊂ Rn that is simply con-
nected. Then ω is exact if and only if it is closed.

III. k-FORMS

A. Differential forms revisited: an algebraic
approach

49. The basic one-form dxi is a linear map which takes a
vector and projects it onto the xi-axis.

dxi(u1, ..., un) = ui

50. The rigorous meaning of these placeholders allow us to
write a general linear map M : R3 → R as

M = A dx+B dy + C dz

where A, B, C are just constants. In other words, it is
an arbitrary linear combination of the three projection
operators. In general, given an abstract vector space
V , the set of linear maps M : V → R forms a vector
space itself, which is called the ”dual vector space” and
denoted by V ∗.

51. For any point P ∈ U , the one-form ω defines a linear
map R3 → R (or equivalently an element of the vector
space dual to R3). This is the dual concept to vector
fields: a vector field is a rule that assigns to all points
on U a vector in R3, while a one-form is a rule that
assigns to all points on U a linear map R3 → R.

52. The basic two-form dxi∧dxj is a multilinear map which
takes two vectors and maps them into the following
determinant.

dxi ∧ dxj(u,v) = det

(
ui vi
uj vj

)

53. The basic three-form dxi ∧ dxj ∧ dxk is a multilinear
map which takes three vectors and maps them into the

following determinant.

dxi ∧ dxj ∧ dxk(u,v,w) = det

ui vi wi

uj vj wj

uk vk wk


54. The basic k-form is a multilinear map which takes k-

vectors and maps them into the following determinant.

dxi1 ∧ · · · ∧ dxik(u
1, ...,uk) = det

u1
i1

. . . uk
i1

...
. . .

...
u1
ik

. . . uk
ik


55. Antisymmetry of basic k-forms. The basic two-forms

satisfy the following properties.

dxi ∧ dxj = −dxj ∧ dxi

In particular,

dxi ∧ dxi = 0

Thus, basic k-forms in Rn are for 1 ≤ k ≤ n.

55. The basic k-forms can be given a geometric interpreta-
tion.

1. The basic three-form calculates the oriented volume
of the parallelepiped spanned by the three vectors
that are taken as input.

2. The basic two forms calculate the oriented area of
the project of the parallelogram spanned by the two
vectors that are taken as input.

56. k-forms in R3. Let U ⊂ R3 be an open subset.

1. A zero-form is a smooth function f : U → R

2. A one-form is an expression of the form

f dx+ g dy + h dz

for smooth functions f, g, h : U → R.

3. A two-form is an expression of the form

f dy ∧ dz + g dz ∧ dx+ h dx ∧ dy

for smooth functions f, g, h : U → R.

4. A three-form is an expression of the form

f dx ∧ dy ∧ dz

for a smooth function f : U → R.

57. We thus can give a geometric meaning to k-forms. A k-
form assigns a multilinear map (R3)k → R to all points
in U . In other words, a k-form assigns a notion of a
k-dimensional oriented volume for the corresponding
projection of the k-dimensional parallelepiped gener-
ated by the k vectors.
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58. Correspondence between one-forms and vector fields.

differential form vector calculus

f f

f dx+ g dy + h dz (f, g, h)

f dy ∧ dz + g dz ∧ dx+ h dx ∧ dy (f, g, h)

f dx ∧ dy ∧ dz f

B. Multiplying k-forms: the wedge product

59. The wedge product ω ∧ η is a (k +m)-form defined by

ω ∧ η = fg dxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjm

60. Comparing ω ∧ η to η ∧ ω

ω ∧ η = (−1)kmη ∧ ω.

61. The wedge product of two one-forms is the cross prod-
uct of the associated vector fields.

62. The wedge product of a one-form and a two-form is the
dot product of the associated vector fields.

C. Differentiating k-forms: the exterior derivative

63. The exterior derivative of a 0-form f on U ⊂ Rn is the
one form df on U given by

df =

n∑
i=1

∂f

∂xi
dxi

64. The exterior derivative of a k-form ω on U ⊂ Rn is the
one form dω on U given by

dω =
∑

1≤i1<···<ik≤n

d(fi1···ik) ∧ dxi1 ∧ · · · ∧ dxik

65. The exterior derivative in R3

1. If f is a zero-form on U ⊂ R3, then its exterior
derivative df is the one-form

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

2. If ω is a one-form on U ⊂ R3, then its exterior deriva-

tive dω is the one-form

dω = d(f) ∧ dx+ d(g) ∧ dy + d(h) ∧ dz

=

(
∂h

∂y
− ∂g

∂z

)
dy ∧ dz +

(
∂f

∂z
− ∂h

∂x

)
dz ∧ dx

+

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy.

3. If ω is a two-form on U ⊂ R3, then its exterior deriva-
tive dω is the one-form

dη = d(f) ∧ dy ∧ dz + d(g) ∧ dz ∧ dx

+ d(h) ∧ dx ∧ dy.

=

(
∂f

∂x
+

∂g

∂y
+

∂h

∂z

)
dx ∧ dy ∧ dz.

66. Exterior derivatives are linear, that is,

d(aω + bη) = adω + bdη

67. The graded product rule for the exterior derivative.

d(ω ∧ η) = d(ω) ∧ η + (−1)kω ∧ d(η)

68. The four non-vanishing cases of the graded product
rule

1. two one-forms

d(fg) = (df)g + f(dg)

2. a zero-form and a one-form

d(fη) = (df) ∧ η + f(dη)

3. a zero-form and a two-form

d(fη) = (df) ∧ η + f(dη)

4. a one-form and a one-form

d(ω ∧ η) = (dω) ∧ η − ω ∧ (dη)

69. d2 = 0

D. The exterior derivative and vector calculus

70. The gradient of a function is the vector field associated
to the exterior derivative of a zero-form.
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71. The curl of a vector field is the vector field associated
to the exterior derivative of a one-form.

72. The divergence of a vector field is the exterior deriva-
tive of a two-form.

73. Vector calculus identities, part I

1. ∇(fg)

2. ∇× (fF)

3. ∇ · (fF)

4. ∇ · (F×G)

74. Vector calculus identities, part II

1. ∇× (∇f) = 0

2. ∇ · (∇× F) = 0

75. Vector calculus identities, part III

∇ · (f(∇g ×∇h)) = ∇f · (∇g ×∇h)

76. Vector calculus identities, part IV

1. ∇(F ·G)

2. ∇× (F×G)

Here, (G · ∇)F means

(G · ∇)F = G1
∂

∂x
F+G2

∂

∂y
F+G3

∂

∂z
F

E. Physical interpretation of grad, curl, and div

F. Exact and closed k-forms

77. We say ω is closed if dω = 0 and we say ω is exact
if there exists a (k − 1)-form η such that ω = dη.

78. If a k-form is exact, it is closed.

79. Poincare’s lemma for k-forms, version I. ω on Rn

is exact if and only if ω is closed.

80. Poincare’s lemma for k-forms, version II. ω on
open ball U ⊂ Rn is exact if and only if ω is closed.

[1] V. Bouchard. MATH 215: Calculus IV. https://sites.

ualberta.ca/~vbouchar/MATH215/front.html.

https://sites.ualberta.ca/~vbouchar/MATH215/front.html
https://sites.ualberta.ca/~vbouchar/MATH215/front.html
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