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Chapter 1 The Integers

This chapter deals with (1.3) mathematical induction, the (1.4) Fibonacci numbers, and (1.5) divisibility.

Def. The Well-ordering Principle

Thm 1.2. The Pigeon Hole Principle

Thm 1.5. The Principle of Mathematical Induction

Def. The Fibonacci Sequence

Thm 1.7. There exists a formula that calculates the nth term of the Fibonacci sequence.

Thm 1.8. The divisibility relation is transistive.

Thm 1.9. A linear combination of divisible integers (by a certain dividend) is also also divisible (by the same

dividend).

Thm 1.10. The Division Algorithm

Chapter 3 Primes and Greatest Common Divisors

This chapter deals with (3.1) prime numbers, the (3.2) distribution of primes, (3.3) greatest common

divisors and their properties, the (3.4) Euclidean algorithm, the (3.4) fundamental theorem of arithmetic,

(3.6) factorisation methods and the Fermat numbers, and (3.7) linear Diophantine equations.

Lem 3.1. Every integer greater than 1 has a prime divisor.

Thm 3.1. There are infinitely many primes.

Thm 3.2. If n is a composite integer, than n has a prime factor not exceeding
√
n.

Thm 3.3. Dirichlet’s Theorem on Primes in Arithmetic Progressions

Thm 3.4. The Prime Number Theorem

Cor 3.4.1. The nth prime number is approximately n lnn.

Thm 3.5. For any positive integer n, there exists a sequence of at least n integers that are all composite.
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Thm 3.7. Let a, b, and c be integers. Then,

(a+ bc, b) = (a, b).

Thm 3.8. The greatest common divisors of the integers a and b, not both 0, is the least positive integer that

is a linear combination of a and b.

Thm 3.11. The Euclidean Algorithm

Thm 3.15. The Fundamental Theorem of Arithmetic

Thm 3.16. [a, b] = ab / (a, b)

Thm 3.17 There are infinitely many primes of the form 4n+ 3.

Thm 3.18. Quotient solutions of a polynomial ring over Z are all integers.

Def. Fermat Numbers

Lem 3.10. F0 F1 · · · Fn−1 = Fn − 2

Thm 3.21. Two distinct Fermat numbers are relatively prime.

Thm 3.23. A two variable linear Diophantine equation has integer solutions if and only if the constant term

is divisible by the greatest common divisor of the two coefficients.

Chapter 4 Congruences

This chapter contains an (4.1) introduction to congruences, (4.2) linear congruences, and the (4.3)

Chinese remainder theorem.

Thm 4.1. If a and b are integers, then a is congruent to b modulo m if and only if there exists an integer k

such that

a = km+ b.

Thm 4.2. The relation formed by congruent integers form an equivalent relation on the set of integers.

Thm 4.3. Two integers being congruent modulo a modulus means that the result of reducing the two integers

modulo the modulus are identical (the least positive residues of the integers are identical).

Def. A Complete System of Residues Modulo m

Thm 4.4. You can add, subtract, and multiply integers to congruences.

Thm 4.5. Consider two integers that are divisible by a common integer c. Given that they are congruent

modulo m, the congruence modulo m / (c,m) is guaranteed.

Cor 4.5.1. If (c,m) is 1, the two quotients aforementioned are congruent modulo m.

Thm 4.6. You can add subtract and multiply congruences from one another.

Lem 4.1. A set of m incongruent integers modulo m forms a complete set of residues modulo m.

2



Thm 4.7. Consider a vector v⃗1 whose entries are a complete system of residues modulo m. Some v⃗2 defined

as av⃗1 + b also have entries that consist a complete systems of residues, given that (a,m) = 1.

Thm 4.8. You can exponentiate congruences.

Thm 4.9. Two integers are congruent modulo a series of moduli if and only if they are congruent modulo

their least common multiple.

Cor 4.9.1. Two integers are congruent modulo a series of moduli that are pairwise relatively prime if and only

if they are congruent modulo the product of the moduli.

Thm 4.11. A single variable linear congruence has solutions if and only if the greatest common divisor d of the

modulus and the coefficient divides the constant term. When it does, there are exactly d numbers

of incongruent solutions.

Cor 4.11.1. When the coefficient and the modulus are relatively prime, there exists a unique solution modulo

the modulus.

Def. Modular Inverse

Thm 4.12. An positive integer is an inverse of itself if and only if it is congruent to 1 or -1.

Thm 4.13. Chinese Remainder Theorem

Def. Formal Derivative

Thm 4.15. Hensel’s Lemma

Cor 4.15.1. In the case that f(c) is congruent to 0 modulo p and f ′(c) is not congruent to 0 modulo p, there

exists a formula for lifting a solution to modulo p2 and etcetera.

Chapter 6 Some Special Congruences

This chapter deals with (6.1) Wilson’s theorem and Fermat’s little theorem, and (6.3) Euler’s Theorem.

Thm 6.1. Wilson’s Theorem

Thm 6.2. A positive integer n > 1 that satisfies (n− 1)! ≡ −1 (mod n) is a prime number.

Thm 6.3. Fermat’s Little Theorem

Thm 6.4. Given that (a, p) is equal to 1 or not, for a positive integer a and prime p, ap is congruent to a

modulo p.

Thm 6.5. For an integer a that is relatively prime to prime p, ap−2 is its modular inverse modulo p.

Cor 6.5.1. For an integer a that is relatively prime to prime p, the solution for the linear congruence ax ≡

b (mod p) is x ≡ ap−2b (mod p)

Def. Euler Phi-function

Def. Reduced Residue System Modulo n
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Thm 6.13. Consider a vector v⃗1 whose entries are a reduced residues system modulo m. Some v⃗2 defined as

av⃗1 also have entries that consist a complete systems of residues, given that (a,m) = 1.

Thm 6.14. Euler’s Theorem

Chapter 7 Multiplicative Function

This chapter deals with the (7.1) Euler phi-function, the (7.2) sum and number of divisors, (7.3) perfect

numbers and Mersenne primes.

Def. Arithmetic Function

Def. Multiplicative Function

Def. Divisor Summatory Function

Thm 7.7 ∑
d|n

ϕ(d) = n

Def. Sum of Divisors Function

Def. Number of Divisors Function

Thm 7.8. The summatory function of a multiplicative function is also multiplicative.

Cor 7.8.1. The sum of divisors function and the number of divisors function are multiplicative functions.

Lem 7.1. There exists formulas for σ(pn) and τ(pn) in terms of positive integer n and prime p.

Thm 7.9.

σ(n) =

s∏
j=1

p
aj+1
j − 1

p− 1
and τ(n) =

s∏
j=1

(aj + 1)

Def. Perfect Number

Thm 7.10. A positive number n is a perfect number if and only if n = 2m−1(2m − 1) where m is a positive

integer greater than 1 and 2m − 1 is prime.

Thm 7.11. If m is a positive integer and 2m − 1 is prime, then m must be prime.

Def. Mersenne Numbers

Thm 7.12. For an odd prime p, the pth Mersenne number only has positive divisors in the form of 2kp + 1

where k is a positive integer.
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Chapter 9 Primitive Roots

This chapter deals with the (9.1) order of an integer and primitive roots, (9.2) primitive roots for primes,

the (9.3) existence of primitive roots, and (9.4) discrete logarithms and index arithmetic.

Def. Order of a Modulo n (necessary that (a, n) = 1)

Thm 9.1. For a nonzero integer a and a positive integer n with (a, n) = 1, x is a solution of ax ≡ 1 (mod n)

if and only if the order of a modulo n divides x.

Cor 9.1.1. For a nonzero integer a and a positive integer n with (a, n) = 1, ϕ(n) is always a solution of the

congruence above, and the order of a modulo n divides ϕ(n).

Thm 9.2. Given (a, n) = 1, two different exponentials of a in modulo n are congruent if and only if the powers

are congruent modulo ordna.

Def. Primitive Root Modulo n

Thm 9.3. The first ϕ(n) powers of a primitive root modulo m form a reduced residue system modulo m.

Thm 9.4. ordn(a
u) = t/(t, u)

Cor 9.4.1. A power of a primitive root is a primitive root if and only if the power and ϕ(n) is relatively prime.

Thm 9.5. For modulus n, there are ϕ(ϕ(n)) incongruent primitive roots.

Thm 9.6. Lagrange’s Theorem A n-degree polynomial ring over the field Z/pZ (expressible as Zp [x]) where

p is prime has at most n incongruent solutions.

Thm 9.7. Let d be a divisor of p− 1 where p is prime. xd − 1 has exactly d incongruent solutions modulo p.

Thm 9.8. We can find the number of positive integers less than p that has a certain integer (albeit there’s

a condition that this integer has to divide p − 1) as its order. The number of integers less than p

that have d as its order is exactly ϕ(d).

Lem 9.1. The number of integers less than p that have d | p− 1 as its order does not exceed ϕ(d).

Cor 9.8.1. Every prime has a primitive root.

Def. Index, Discrete Logarithm of a base r modulo m

Thm 9.16. (a) indr1 ≡ 0 (mod ϕ(m))

(b) indrab ≡ indra+ indrb (mod ϕ(m))

(c) indra
k ≡ k indra (mod ϕ(m))

Chapter 11 Quadratic Residues

This chapter deals with (11.1) quadratic residues and nonresidues, the (11.2) law of quadratic reciprocity,

and the (11.3) Jacobi symbol.
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Def. Quadratic Residue

Thm 11.1. There are (p− 1)/2 quadratic residues of p bigger than 0 and smaller than p.

Lem 11.1. Let p be an odd prime and a be an integer such that (a, p) = 1. x2 ≡ a (mod m) has either no and

2 solutions.

Thm 11.2. Let a be an integer such that (a, p) = 1. If a is a quadratic residue, indra is even and if not, indra

is odd.

Def. Legendre Symbol

Thm 11.3. Euler’s Criterion

Thm 11.4. (a) If a ≡ b (mod p) then (a/p) = (b/p)

(b) (a/p) (b/p) = (ab/p)

(c)
(
a2/p

)
= 1

Lem 11.2. Gauss’s Lemma

Thm 11.6. Given odd prime p, (
2

p

)
= (−1)(p

2−1)/8

Thm 11.7. The Law of Quadratic Reciprocity

Lem 11.3.

Thm 11.8. Let p and q be distinct odd primes with (a, p) = 1 and p ≡ ±q (mod 4a). Then,

(
a

p

)
=

(
b

q

)
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