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Chapter 1 Probability

(def)

(def)

(thm)
(def)
(thm)

(def)

(thm)
(thm)

(def)

Prior Probabilities

Posterior Probabilities

Probability Axioms

Sample Space §2

Sample Point w

o-field F

Probability Set Function P: F — R
Probability Space (£2,F, P)

Fvent

Disjoint, Mutually Fxclusive
Inclusion-FExclusion Principle
Conditional Probability
Multiplication Rule

Partition
Disjoint Union

Exhaustive
Rule of Total Probability
Bayes’ Theorem

(Stochastic) Independence
Mutual Independence



Chapter 2 Random Variables

(def) Random Variable X
Range, Space D
Distribution
Probability Mass Function fx
Probability Density Function fx

Cumulative Distribution Function Fx

(def) Discrete Random Variable X
Support S

Transformation

(thm)

(def) Continuous Random Variable X
(thm) Cumulative Distribution Function Technique

(thm)

) =rfx(g' W) |5

(def) Jacobian J

Mizture
(def) Ezpectation E [X]

(thm)

(thm)

Ek191(X) + kago(X)] = k1 E [91(X)] + k2 £ [92(X)]

(def) Mean Value p or E [X]
Variance o or Var [X]

Standard Deviation o or sd [X]

(def) Moment Generating Function mx (t)

n-th Moment E [X"]

(def) Markov’s Inequality
Chebychev’s Inequality



Chapter 3 Joint Probability Distributions

(def) Random Vector (X1, X5)
Range, Space D or Rx
Joint Cumulative Distribution Function Fx, x,
Discrete Random Vector
Joint Probability Mass Function fx, x,
Continuous Random Vector
Joint Probability Density Function fx, x,
Support S
Marginal Probability Mass Functions
Marginal Probability Density Functions
Conditional Probability Mass Functions fx,|x,(22|21)

Conditional Probability Density Functions fx,|x,(z2|21)
(def) (Stochastic) Independence

(def) Covariance Cov [X1, Xo)
Correlation Coefficient p [X1, X2]

(thm) Let 7= "7, a;X;. Then,

E[T]ZZEZCMEW)Q}
i=1
(thm) Let 7= 37" ) a;X; and W = 377" | a;Y;. Then,

Cov [T,W] =Y a;b;jCov [X;,Y]]

i=1 j=1

(cor) Let T'= 3", a; X;. Then,

Var [T] = Cov [T, T] = _a;Var[X;] + 2 aia;Cov[X;, X;]
=1

i<j
(cor) If X1, ..., X,, are independent random variables,

Var [T] = Z a?Var [X;]
i=1



Chapter 4 Discrete Probability Distributions

(def) Discrete Uniform Distribution

fx(z) = % Iry

Bernoulli Distribution

fx(@)=p"(1—p)'™" In,

Binomial Distribution

fx(z) = (Z)p””(l —p)"" gy

Geometric Distribution

fx(@) =1 =p)""'p-Iny
Negative Binomial Distribution

z—1

e = (07 )= ang

Poisson Distribution

mTe ™

fx(z) == Iy

(thm) Let X ~ B(m,p) and Y ~ B(n,p) be independent. Then,

X+Y ~B(m+n,p)

(thm) Memorylessness (of geometric distributions)

(thm) Let X; ~ Ber(p) and Xj, ..., X,, be pairwise independent. Then,

X1+ ...+ X, ~B(n,p)

(thm) Let X; ~ Ge(p) and X1, ..., X, be pairwise independent. Then,

X1+ ...+ X, ~NB(r,p)



Chapter 5 Continuous Probability Distributions

(def) Continuous Uniform Distribution

1
Gamma Distribution
xa—le—m/b’
fx(x)zip(a)ﬂa IRy, a>0,8>0

FExponential Distribution

Normal Distribution

Standard Normal Distribution
Standard Normal Random Variable

(def) Gamma Function
I'a) = / t*~te~tat, a>0
(thm) Let X ~ P(m) and T be the time taken until the a-th event. Then, T' ~ Ga(w,1/m)

(thm) Memorylessness (of exponential distributions)

(def) Survival Function S(zx)
Hazard Rate, Failure Rate h(x)

(thm) X has a N(u,o?) distribution if and only if Z = (X — p)/o has a N(0, 1) distribution.
(thm) A linear transformation Y = aX +bof a X ~ N(p,0?) is Y ~ N(ap + b, (ac)?)
(thm) Let X1, ..., X,, be pairwise independent with X; ~ N(u;,0?). Then,

zn:aiXi ~ N (i @i fhis zn:(aiai)2>
i1 i=1

i=1



Chapter 7 Sampling Distribution

7.1 Population Distributions

(def) Population X or f(x;0)
Sample X1, Xa, ..., X,
Realizations x1, ..., Ty,
Sample Size n
Population Parameter 6
Random Sample X1, Xa, ..., X,
Statistic T(X1, Xa, ..., X;,) (of a random variable)

7.2 Sampling Distributions from a Single Random Sample

(def) Sample Mean X (of a random sample)
Sample Variance S? (of a random sample)

Population Proportion p (of a random sample each from a Bernoulli distribution)

thm) Central Limit Theorem The linear transformation Z = (X — u)/(0/+/n) converges in distribution
hm) C [ Limit Th The li f ion Z = (X distrib
to N(0,1). That is, X converges in distribution to N(u,c?/n).
(cor) Let X1, ..., X, be a random sample with X; ~ N(u,0?). Then, (n —1)S?/0? converges in distri-
bution to X?(n — 1).
(cor) Let Xy,...,X, be a random sample with X; ~ Ber(p). Then, p converges in distribution to
N(p,p(1 —p)/n).

(cor) Let X7i,..., X,, be a random sample with X; ~ N(u,02). Then, T = (X — u)/(S/\/n) converges
in distribution to ¢(n — 1).

7.3 Sampling Distributions from Multiple Random Samples

It is important to recognize that throughout, we assume the random variables from the two random

samples are pairwise independent.

(cor) Let X1, ..., X,, be a random sample with X; ~ N(ui,07) and Y7, ..., Y, be a random sample with
Y; ~ N(p2,03). Then, X — Y converges in distribution to N(uy — 2, 0% /m + 03 /n).

(cor) Let Xi,..., X,, be a random sample with X; ~ Ber(p;) and Y7,...,Y,, be a random sample with
Y; ~ Ber(pz). Then, p; — po converges in distribution to N(p; — p2,p1(1 — p1)/m + p2(1 — pa)/n)

(cor) Let Xi,..., X,, be a random sample with X; ~ N(u1,0?) and Y7, ...,Y,, be a random sample with
Y; ~ N(pa2,03). Then, (S?/0?)/(S3/03) converges in distribution to F(m — 1,n — 1).

(cor) (T when 0? = 03 = 0?) Let X1,..., X;,, be a random sample with X; ~ N(uj,0?) and Y7,..., Y,
be a random sample with ¥; ~ N(u2,0?). Then, T = [(X = Y) — (u1 — p2)] /Sp/1/m + 1/n

converges in distribution to t(m 4+ n — 2).



(cor) (T when o7 # 03) Let Xi,...,X,, be a random sample with X; ~ N(u1,0%) and Yi,...,Y,
be a random sample with Y; ~ N(u2,03). Then, T = [(X —Y) — (u1 — p2)] /\/S/m + S3/n

converges in distribution to t(v).

7.4 Distributions Generated by Standard Normal Distributions
(X2-distribution)

thm) Let X1, ..., X,, be a random sample with X; ~ N(0,1). Then, >~ , X? converges in distribution
=1 [3 g
to X2(n).

(cor) Let Xi,..., X, be a random sample with X; ~ N(u;,0?). Then, > 1" | [(X; — 15)/oi]® converges
in distribution to X?(n).

(cor) Let X, ..., X, be a random sample with X; ~ X;(k;). Then, > " | X;(k;) converges in distribution
to X2(ky + ko + ... + ky).

(cor) Let X7, X5 be independent with X; ~ X;(k;). Then, Xo— X7 ~ X; (ko — k1) given that ks — k1 > 0.
(t-distribution)

(thm) Let W and V be independent with W ~ N(0,1) and V ~ X?2(k). Then, T = W/,/V/k follows the
distribution ¢(k).

(thm) o (k) = —t1_a (k)
(F-distribution)

(thm) Let U and V be independent with U ~ X?(m) and V ~ X?(n). Then, F = (U/m)/(V/n) follows
the distribution F'(m,n).

(thm) F,(m,n)=1/Fi_,(n,m)

(thm) Let W and V be independent with W ~ N(0,1) and V ~ X?(k). Then, T? = W?2/(V/k) follows
the distribution F(1, k).

7.5 Order Statistics
(def) Order Statistic Xy,

(thm)



Chapter 8 FEstimation

(def) Statistical Inference
Point Estimation
Interval Estimation
Degree of Confidence
Estimator 0 = (X1, ..., X,)
Estimate 0 = 0(x1, ..., x,)

(def) Unbiased Estimator
Efficient Estimator
Consistent Estimator
Likelihood Function L(0;x1, 2o, ..., Tp)

Mazimum Likelihood Estimator

Chapter 9 Hypothesis Testing

This chapter deals with the (1.1) basics of hypothesis testing and (1.2) testing of normal distributions.

(def) Null Hypothesis Hy
Alternative Hypothesis Hy
Significance Level o
Crritical Region
One Sided Lower Hypothesis
One Sided Higher Hypothesis
Two sided Hypothesis
Type I Error
Type II Error
Test Statistic
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