A Bird's-eye View

Mathematical Statistics

Dane Jeon

Chapter 1 Probability

- (def) Prior Probabilities

 Posterior Probabilities

 Probability Axioms

 Sample Space Ω Sample Point ω σ -field \mathcal{F}
 - Probability Set Function $P: \mathcal{F} \to \mathbb{R}$
 - Probability Space (Ω, \mathcal{F}, P)
- $\begin{array}{ccc} (\mathrm{def}) & Event \\ & Disjoint, \; Mutually \; Exclusive \end{array}$
- (thm) Inclusion-Exclusion Principle
- (def) Conditional Probability
- (thm) Multiplication Rule
- $\begin{array}{c} \text{(def)} \ \ Partition \\ \\ Disjoint \ Union \\ \\ Exhaustive \end{array}$
- (thm) Rule of Total Probability
- (thm) Bayes' Theorem
- $\begin{array}{ccc} ({\rm def}) & (Stochastic) & Independence \\ & & Mutual & Independence \end{array}$

Chapter 2 Random Variables

(def) Random Variable X

Range, Space \mathcal{D}

Distribution

Probability Mass Function f_X

Probability Density Function f_X

Cumulative Distribution Function F_X

(def) Discrete Random Variable X

Support S

Transformation

(thm)

$$f_Y(y) = P[Y = y] = P[g(X) = y] = P[X = g^{-1}(y)] = f_X(g^{-1}(y))$$

- (def) Continuous Random Variable X
- (thm) Cumulative Distribution Function Technique

(thm)

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

- (def) Jacobian J Mixture
- (def) Expectation E[X]

(thm)

$$E[Y] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$
 and $E[Y] = \sum_{x \in \mathcal{S}_X} g(x) f_X(x)$

(thm)

$$E[k_1g_1(X) + k_2g_2(X)] = k_1E[g_1(X)] + k_2E[g_2(X)]$$

(def) Mean Value μ or E[X]

Variance σ^2 or Var[X]

Standard Deviation σ or sd [X]

(def) Moment Generating Function $m_X(t)$

n-th $Moment E[X^n]$

(def) Markov's Inequality

Chebychev's Inequality

Chapter 3 Joint Probability Distributions

(def) Random Vector (X_1, X_2)

Range, Space \mathcal{D} or R_X

Joint Cumulative Distribution Function F_{X_1,X_2}

Discrete Random Vector

Joint Probability Mass Function f_{X_1,X_2}

Continuous Random Vector

Joint Probability Density Function f_{X_1,X_2}

Support S

Marginal Probability Mass Functions

Marginal Probability Density Functions

Conditional Probability Mass Functions $f_{X_1|X_2}(x_2|x_1)$

Conditional Probability Density Functions $f_{X_1|X_2}(x_2|x_1)$

- (def) (Stochastic) Independence
- (def) Covariance Cov $[X_1, X_2]$ Correlation Coefficient $\rho [X_1, X_2]$
- (thm) Let $T = \sum_{i=1}^{n} a_i X_i$. Then,

$$E[T] = \sum_{i=1}^{n} a_i E[X_i]$$

(thm) Let $T = \sum_{i=1}^{n} a_i X_i$ and $W = \sum_{j=1}^{m} a_i Y_i$. Then,

$$Cov[T, W] = \sum_{i=1}^{n} \sum_{i=1}^{m} a_i b_j Cov[X_i, Y_j]$$

(cor) Let $T = \sum_{i=1}^{n} a_i X_i$. Then,

$$\operatorname{Var}\left[T\right] = \operatorname{Cov}\left[T, T\right] = \sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left[X_{i}\right] + 2 \sum_{i < j} a_{i} a_{j} \operatorname{Cov}\left[X_{i}, X_{j}\right]$$

(cor) If $X_1, ..., X_n$ are independent random variables,

$$\operatorname{Var}\left[T\right] = \sum_{i=1}^{n} a_i^2 \operatorname{Var}\left[X_i\right]$$

Chapter 4 Discrete Probability Distributions

(def) Discrete Uniform Distribution

$$f_X(x) = \frac{1}{n} \cdot I_{R_X}$$

Bernoulli Distribution

$$f_X(x) = p^x (1-p)^{1-x} \cdot I_{R_X}$$

Binomial Distribution

$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x} \cdot I_{R_X}$$

 $Geometric\ Distribution$

$$f_X(x) = (1-p)^{x-1}p \cdot I_{R_X}$$

Negative Binomial Distribution

$$f_X(x) = {x-1 \choose r-1} p^r (1-p)^{x-r} \cdot I_{R_X}$$

 $Poisson\ Distribution$

$$f_X(x) = \frac{m^x e^{-m}}{x!} \cdot I_{R_X}$$

(thm) Let $X \sim B(m, p)$ and $Y \sim B(n, p)$ be independent. Then,

$$X + Y \sim B(m + n, p)$$

- (thm) Memorylessness (of geometric distributions)
- (thm) Let $X_i \sim \text{Ber}(p)$ and $X_1, ..., X_n$ be pairwise independent. Then,

$$X_1 + \ldots + X_r \sim B(n, p)$$

(thm) Let $X_i \sim \text{Ge}(p)$ and $X_1, ..., X_r$ be pairwise independent. Then,

$$X_1 + \dots + X_r \sim NB(r, p)$$

Chapter 5 Continuous Probability Distributions

(def) Continuous Uniform Distribution

$$f_X(x) = \frac{1}{(b-a)} \cdot I_{R_X}$$

Gamma Distribution

$$f_X(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}} \cdot I_{R_X}, \qquad \alpha > 0, \ \beta > 0$$

Exponential Distribution

$$f_X(x) = \lambda e^{-\lambda t} \cdot I_{R_X}$$

Normal Distribution

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} \cdot I_{R_X}$$

Standard Normal Distribution

Standard Normal Random Variable

(def) Gamma Function

$$\Gamma(\alpha) = \int_{-\infty}^{\infty} t^{\alpha - 1} e^{-t} dt, \qquad \alpha > 0$$

- (thm) Let $X \sim P(m)$ and T be the time taken until the α -th event. Then, $T \sim \text{Ga}(\alpha, 1/m)$
- (thm) Memorylessness (of exponential distributions)
- (thm) X has a $N(\mu, \sigma^2)$ distribution if and only if $Z = (X \mu)/\sigma$ has a N(0, 1) distribution.
- (thm) A linear transformation Y=aX+b of a $X\sim N(\mu,\sigma^2)$ is $Y\sim N(a\mu+b,(a\sigma)^2)$
- (thm) Let $X_1,...,X_n$ be pairwise independent with $X_i \sim N(\mu_i,\sigma_i^2)$. Then,

$$\sum_{i=1}^{n} a_i X_i \sim N\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} (a_i \sigma_i)^2\right)$$

Chapter 7 Sampling Distribution

7.1 Population Distributions

(def) Population X or $f(x;\theta)$ $Sample\ X_1, X_2, ..., X_n$ $Realizations\ x_1, ..., x_n$ $Sample\ Size\ n$ $Population\ Parameter\ \theta$ $Random\ Sample\ X_1, X_2, ..., X_n$ $Statistic\ T(X_1, X_2, ..., X_n)$ (of a random variable)

7.2 Sampling Distributions from a Single Random Sample

- (def) Sample Mean \bar{X} (of a random sample) Sample Variance S^2 (of a random sample) Population Proportion \hat{p} (of a random sample each from a Bernoulli distribution)
- (thm) Central Limit Theorem The linear transformation $Z = (\bar{X} \mu)/(\sigma/\sqrt{n})$ converges in distribution to N(0,1). That is, \bar{X} converges in distribution to $N(\mu,\sigma^2/n)$.
- (cor) Let $X_1, ..., X_n$ be a random sample with $X_i \sim N(\mu, \sigma^2)$. Then, $(n-1)S^2/\sigma^2$ converges in distribution to $\mathcal{X}^2(n-1)$.
- (cor) Let $X_1,...,X_n$ be a random sample with $X_i \sim Ber(p)$. Then, \hat{p} converges in distribution to N(p,p(1-p)/n).
- (cor) Let $X_1, ..., X_n$ be a random sample with $X_i \sim N(\mu, \sigma^2)$. Then, $T = (\bar{X} \mu)/(S/\sqrt{n})$ converges in distribution to t(n-1).

7.3 Sampling Distributions from Multiple Random Samples

It is important to recognize that throughout, we assume the random variables from the two random samples are pairwise independent.

- (cor) Let $X_1, ..., X_m$ be a random sample with $X_i \sim N(\mu_1, \sigma_1^2)$ and $Y_1, ..., Y_n$ be a random sample with $Y_i \sim N(\mu_2, \sigma_2^2)$. Then, $\bar{X} \bar{Y}$ converges in distribution to $N(\mu_1 \mu_2, \sigma_1^2/m + \sigma_2^2/n)$.
- (cor) Let $X_1, ..., X_m$ be a random sample with $X_i \sim \text{Ber}(p_1)$ and $Y_1, ..., Y_n$ be a random sample with $Y_i \sim \text{Ber}(p_2)$. Then, $\hat{p}_1 \hat{p}_2$ converges in distribution to $N(p_1 p_2, p_1(1 p_1)/m + p_2(1 p_2)/n)$
- (cor) Let $X_1,...,X_m$ be a random sample with $X_i \sim N(\mu_1,\sigma_1^2)$ and $Y_1,...,Y_n$ be a random sample with $Y_i \sim N(\mu_2,\sigma_2^2)$. Then, $(S_1^2/\sigma_1^2)/(S_2^2/\sigma_2^2)$ converges in distribution to F(m-1,n-1).
- (cor) (T when $\sigma_1^2 = \sigma_2^2 = \sigma^2$) Let $X_1, ..., X_m$ be a random sample with $X_i \sim N(\mu_1, \sigma^2)$ and $Y_1, ..., Y_n$ be a random sample with $Y_i \sim N(\mu_2, \sigma^2)$. Then, $T = \left[(\bar{X} \bar{Y}) (\mu_1 \mu_2) \right] / S_p \sqrt{1/m + 1/n}$ converges in distribution to t(m + n 2).

(cor) (T when $\sigma_1^2 \neq \sigma_2^2$) Let $X_1, ..., X_m$ be a random sample with $X_i \sim N(\mu_1, \sigma_1^2)$ and $Y_1, ..., Y_n$ be a random sample with $Y_i \sim N(\mu_2, \sigma_2^2)$. Then, $T = \left[(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2) \right] / \sqrt{S_1^2 / m + S_2^2 / n}$ converges in distribution to $t(\nu)$.

7.4 Distributions Generated by Standard Normal Distributions

 $(\mathcal{X}^2$ -distribution)

- (thm) Let $X_1, ..., X_n$ be a random sample with $X_i \sim N(0, 1)$. Then, $\sum_{i=1}^n X_i^2$ converges in distribution to $\mathcal{X}^2(n)$.
- (cor) Let $X_1,...,X_n$ be a random sample with $X_i \sim N(\mu_i,\sigma_i^2)$. Then, $\sum_{i=1}^n \left[(X_i \mu_i)/\sigma_i \right]^2$ converges in distribution to $\mathcal{X}^2(n)$.
- (cor) Let $X_1, ..., X_n$ be a random sample with $X_i \sim \mathcal{X}_i(k_i)$. Then, $\sum_{i=1}^n \mathcal{X}_i(k_i)$ converges in distribution to $\mathcal{X}^2(k_1 + k_2 + ... + k_n)$.
- (cor) Let X_1, X_2 be independent with $X_i \sim \mathcal{X}_i(k_i)$. Then, $X_2 X_1 \sim \mathcal{X}_i(k_2 k_1)$ given that $k_2 k_1 > 0$. (t-distribution)
- (thm) Let W and V be independent with $W \sim N(0,1)$ and $V \sim \mathcal{X}^2(k)$. Then, $T = W/\sqrt{V/k}$ follows the distribution t(k).
- (thm) $t_{\alpha}(k) = -t_{1-\alpha}(k)$ (F-distribution)
- (thm) Let U and V be independent with $U \sim \mathcal{X}^2(m)$ and $V \sim \mathcal{X}^2(n)$. Then, F = (U/m)/(V/n) follows the distribution F(m, n).
- (thm) $F_{\alpha}(m, n) = 1/F_{1-\alpha}(n, m)$
- (thm) Let W and V be independent with $W \sim N(0,1)$ and $V \sim \mathcal{X}^2(k)$. Then, $T^2 = W^2/(V/k)$ follows the distribution F(1,k).

7.5 Order Statistics

(def) Order Statistic $X_{(k)}$

(thm)

$$F_{X_{(k)}} = \sum_{j=k}^{n} \binom{n}{j} [F(x)]^{j} [F(x)]^{n-j}$$

Chapter 8 Estimation

(def) Statistical Inference

Point Estimation

Interval Estimation

Degree of Confidence

Estimator $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$

Estimate $\hat{\theta} = \hat{\theta}(x_1, ..., x_n)$

(def) Unbiased Estimator

 ${\it Efficient\ Estimator}$

Consistent Estimator

Likelihood Function $L(\theta; x_1, x_2, ..., x_n)$

Maximum Likelihood Estimator

Chapter 9 Hypothesis Testing

This chapter deals with the (1.1) basics of hypothesis testing and (1.2) testing of normal distributions.

(def) Null Hypothesis H_0

Alternative Hypothesis H_1

Significance Level α

Critical Region

One Sided Lower Hypothesis

One Sided Higher Hypothesis

 $Two\ sided\ Hypothesis$

 $Type\ I\ Error$

Type II Error

 $Test\ Statistic$

REFERENCES

References

[1] R.V. Hogg, J.W. McKean, and A.T. Craig. *Introduction to Mathematical Statistics*. What's New in Statistics Series. Pearson, 2019.