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I. INTEGRATING FORMS OVER SPACE I

In electrostatics (chapter 2), we often encounter integrals of vector-valued functions which
we integrate over a particular space contextually representative of a charge distribution. In
each problem, we thus chronologically ought to find (1) the particular vector function F ,
(2) parameter(s) and their boundary conditions that sufficiently represent the space (charge
distribution) we’re integrating over, and (3) the anti-derivative of the integral that we’ll
substitute the boundary values to. Steps (1) and (2) together are at minimum at a similar
level of difficulty compared to step (3), and thus require equally careful consideration.

II. INTEGRATING FORMS OVER SPACE II

Gauss’s law, a statement about the divergence of the electric field, along with the gener-
alised Stokes’ theorem, paves a lee-way in deriving the magnitude of the electric field over a
equipotential surface. Thus, for symmetric (spherical, cylindrical, plane) charge distributions
where the direction of the field is intuitive, solutions are easily attainable.

The divergence behaviour of electric fields described above is the cornerstone of many sig-
nificant lemmas, including the electronic field behaviour near sheets (and therefore how a
potential’s, typically exterior, normal derivative acts like around boundaries) and the work
done in assembling a charge distribution (and accordingly electrostatic pressure). To add,
the inconsistency between taking discrete summations for potential and continuous inte-
grals over space lies in the fact that it creates redundancies with particles brought to point
singularities created by its own charge.

III. SOLVING DIFFERENTIAL EQUATIONS OVER SPACE

The analysis in electromagnetism make a quick turn from differential forms to differential
equations as the topic of potential arises. The usefulness of potential comes directly from
Maxwell’s equations, where knowledge of the curl and divergence behaviour of the differential
form E converts the problem of solving for a differential form into a problem of solving for a
scalar field V . Without any magnetic field present (therefore not requiring any knowledge of
the Helmholtz decomposition or Hodge decomposition), the existence of V is guaranteed by
Poincaré’s lemma as the electric field is continuous for all open spheres U ⊂ R3\{0} (note
that the uniqueness is latter imposed by the theory of differential equations). The problem
effectively reduces from solving a whole system of partial differential equations to solving a
single second order partial differential equation (Poisson’s equation).

With an absence of the non-homogeneous term accounting for charge density, Poisson’s
equation reduces to Laplace’s equation (the entirety of chapter 3). To solve this differen-
tial equation, we enforce boundary conditions of the first and second type to guarantee its
uniqueness (Dirichlet andNeumann). Here, the PDE-equivalent of endpoints and first deriva-
tives are points and (exterior) normal derivatives. As the domain would be 3-dimensional
(M ⊂ R3), the boundary would be a surface, denoted as ∂M .
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Laplace’s equation can be intuitively understood as describing the extent that a point in
the domain of V is a local extremum (it should be neither). For more formality, one can
refer to the maximum principle and the mean value property of harmonic functions.

We are introduced to largely two ways of solving Laplace’s equations: the method of images
and separation of variables. The first method takes advantage of the uniqueness of the
field, largely replying on intuition. The second method directly solves Laplace’s equation
using multiplicative separation, starting with a product of functions with single component
dependencies as an ansatz.

A particular theory that is used in determining the coefficients and constants of the ansatz
are Fourier series (particularly the Fourier sine series given that we normally set our ori-
gin to lie on grounded a grounded boundary, more aptly approximated as a odd potential
function) and Fourier-Legendre series. Notable information about these expansions are the
intervals that they are orthogonal ((ϕm, ϕn) = 0) on and their square norms (also known as
the generalised length). For the Fourier sine series, we normally consider half-range expan-
sions, arbitrarily suggesting symmetry about the origin. For a Fourier sine series defined on
the interval (−a, a), the square norm is known to be a, whereas for a Fourier-Legendre series
defined on the interval (−1, 1), the square norm of Legendre polynomial Pn(x) is known to
be 2n/2n+ 1.
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