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1 Lecture 1

In this lecture, we start with an introduction about what general relativity is introducing two

central equations used in the theory. We then move onto special relativity, deducing from

Mazwell’s equations that, according to his theory of electromagnetism, the speed of light is

constant. We finish by deriving a particular transformation that can be derived from this

fact (a special case of a Lorentz transformation), where we convert experienced times be-

tween an observer that is moving relative to another observer at rest.

1.1

rmk.

rmk.

Introduction

This course first begins with an introduction to special relativity which is the no
gravity limit of general relativity. Then, we move on to the mathematics behind
tensors and get a grasp of differential geometry, which is the language of the subject
we’re studying. Next, we learn the Einstein field equations, which relates information

of curvature to the energy-momentum tensor.

G = 871G Ty
~~~ ~~
information on curvature energy-momentum tensor

Finally, we finish the course by looking at a few applications including (1) Newtonian
gravity (which should be a limiting case of general relativity), (2) Schwarzschild
geometry which can be seen as an exact solution of the Einstein field equations with
spherical symmetry, (3) black-holes, (4) cosmology, and (5) gravitational waves.

The totality of general relativity can be summed up into the following two phrases by
the physicist John Wheeler: ”matter tells spacetime how to curve” and ”spacetime
tells matter/particulars how to move”. The first part can be seen as a description of
the Einstein field equations, whereas the second part can be seen as a description of
the geodesic equation that we’ll learn later on.

iy, atd =0



1.2 The Speed of Light & Lorentz Transformations

def. The Maxwell equations in vacuum be summerised like the following

V-E =0

vV-B =0

V x E ——%]?
OE

VxB :NO‘SOai

thm. We can easily prove, through evaluating the curl of the curl of the electric field and
the magnetic field, that the magnetic field and electric field both satisfy the same
partial differential equations which is also a wave equation whose solution describe
waves that travel in the speed of light.

lem. The curl of the curl of a vector field in R (V x (V x F)) can be calculated like the
following.

V x (VxF) =c¢,e,0;(V xF)
= €,jk€i0j (Epim 01 Fim)
= €ijkEkm€i0j0 Fi
= (016jm — Oim0;1)€;0;0, Fp
= €;0,0;F; — €;0,0,F;
=V(V-F)-V?F
Few notes on the notation used. Note that all lower indices are summed over (alike

the Einstein summation convention) and that we used the notation V? to denote the
Laplacian of F.

pf.

0B
VXx(VxE)=Vx <_8t)
0
O’E

= —MO%?O@

Combining this result with the lemma above and Gauss’s law in vaccum, we obtain

82
(—/Loé‘oai52 + V2> E=0



or, equivalently, using the wave operator/d’Alembertian OJ,
OE=0

For the magnetic field,

V x (VXB):VX <M06088Et)>

0
= Moffoa(v x E)

9°B

= _M050W

combining this result with the lemma above and the curl of the magnetic field, we
finally obtain
OB =0

o @ o (B,
20t 0z2 oy 022) \B/)

cor. This second-order partial differential equation in one-dimensional case can be largely

In vector notation,

simplified through a light-cone coordinate system, which is described like the following

T =x+ct

- =z —ct
Then, the differential operators for time and the coordinate x can be rewritten in the
new coordinate system via the chain rule as



thm.

0 ozt 0 oxr~ 0
3~ ot 0ot T ot o 9+ 9)

0 Ox™t ox~
3 = %&r—kma_ =04+ 0-

In this new coordinate system, the equation above becomes
0=04+0_-9
which can be solved as
0_® = f(x_)
O = /dx_f(x_) + c(z)
® = fr(z+ct) + fr(z — ct)

In R3, the equation becomes

82 82 82 82
=+ +—+=—]2
( 202 "o T oy? + 87;2)
whose general solution is

o = /C’k expli(c|k|t + k- x)} + Dy exp{i(—clk|t + k- x)} dk®

Notice how the solution wave has a constant speed of ¢, which is the pinpoint of
Finstein’s theory of special relativity.

We use a imaginary setup involving a train to derive the Lorentz transformation in
a special case where one observer is on the train (S) and one is at rest (S’). As the
speed of light must be equal for both observers,

CAL? = AL? + 02 A7
(? —v*)At? = 412
A — 2L _ cAt _ At

2 -2 A-v T2/

On this note, an event can be considered a point within spacetime indepedent of the

coordinate system used, and thus an event on the train can be denoted as:

event = (Cta z,Y, Z)observer

_ ’o gl
= (Ct , Ut + X0, Yo, Zo)observer'



2 Lecture 2

In this section, we generalize the notion of a Lorentz transformations and learn about the
space-time metric, a tool that can be used to express quantities that are invariant through

Lorentz transformations.

2.1 General Lorentz Transformations

thm. To obtain general Lorentz transformations, consider the example of a observer on
a train that travels along the x-axis being shot by a beam of light at B from an
arbitrary point A. We first express the two events A and B in the coordinates of an
observer outside and an observer inside.

A : (ta z, y)l = (t,7 1'/, y/)o

B:(y/1—=(v/e)?*t",0,0); = (t",vt",0),

The distance difference between the events can be written by the following two ways
as

CQ(t/l o t/)2 — ([L‘/ o Ut/l)Q + y2‘

Solving this quadratic equation with respect to t”,

t'— a2 £ 1)/ (2 — vt) + (1 — v2/c2)y?

t” —
1—0v2/c?

we choose the positive sign for the square-root term as we want the final time to be
later than the initial time for the observer outside.

From this, we can also construct the same equivalence in terms of the observer inside,

giving
A1 —v2/t" —t)? = 2% + 42

Substituting for ¢”, and imposing that the equality holds for arbitrary y, we conclude

that
t' —va'/c?

N

ol =t
V1—v2/c?

Where the primed coordinates describe the coordinates for the observer outside and

t:

the unprimed coordinates describe the coordinates for the observer inside.



HW.

def.

This general form of the Lorentz transform can be written in an alternate notation

where 2# = (29 = ct, 2,9, 2),
0 = ,.Y(xIO /Bxll)
= ,y(:pll _ vx/())
22 = g
3 =B

In the case for a transformation from the moving frame to the rest frame, there would
be a sign change,

20 = (2 + Bzt) + C°
"t = ~y(z! 4 B20) + C!
2 =% 4 C?
3 =234 C3

These transformations are called Lorentz transformations. If you would allow constant
translations (like the second set of equations above), all the transformations would
amalgamate to be a larger set, called Poincaré transformations. Considering these
transformations in the light-cone coordinate system that we considered above, we

o =t + ) = 9L+ Bt = [T e
o =la = fa) =1 - By e

Note that the following expression of distance is an invariant quantity:

obtain

(Az%)? — AZ -7 = (A2"0)? — A - &
as

RHS = ~*(A2° + BAzY)? — 4% (Az! 4 BAxD)?
— (A2?)? — (Az®)?
— (Ax0)2(,}/2 o 72ﬁ2) 4 (Ax1)2(’y2/82 o 72)
— (A2?)? — (Az®)?
=(A2%)? — (Ax')? — (A2?)? - (Aa?)?
=LHS

At this point, we introduce the spacetime metric 7, = diag(—1,1,1,1). Using this
metric, also called the Minkowskian, we can express this invariant quantity (As),



def.

rmk.

recall.

def.

known as the proper distance, as
As? = n,, Azt Az”

As infinitesimals,
ds? = N dat dx”

Using this definition, we can can state that Lorentz transformations are the group of
linear maps that leave the proper distance invariant.

As? = N Az Az’ = N Ly Ly AxP Ax? =
As? = Npo AP Ax?.

Notice that for the proper distance to be invariant, we require
Npo = Nuv Ly Ly
In matrix notation, the above identity can be written as
n=LL

To emphasize again, any Lorentz transformation would satisfy the matrix identity
above. It is good to note that Lorentz transformations can be taken as the set of all
boosts and spacial rotations.

2.2 Representation theory of the Lorentz Group

A simple corollary of the identity above is that the set containing all transformations
would be closed under multiplication and inverses as,

(L1Lo)"n(L1Lo) =7
(LY L™ =n

Here, we recall the definition of a group and a lie group.

A group is a set equiped with a binary operation that is associative, contains an
identity element within the group, and has an inverse element for every element such
that it multiplies to give the identity element above. Some examples of a groups are
the orthogonal groups O(n) where n denotes the order of the group. They are the
collection of all n x n matrices such their matrix multiplication with their transpose
gives the identity matrix.

O(n) = {A € Muxn(R) | ATA=1,}

The subgroup of the orthogonal group whose elements additionally have a unit de-



terminant is called the special orthogonal group.

SO(n) ={A € 0(n) | det(A) =1}

def. The group of all invertible (p + ¢) X (p + ¢) matrices satisfying
ATpA

for n = diag(—1,... — 1, 1,...1) is called the indefinite-orthogonal group. The sub-
———— ——

p—times  g—times
group, called the special indefinite-orthogonal group is, analogous to the case above,
members of O(p,q) with a unit determinant. In this way, the Lorentz group can be

reframed as the special indefinite-orthogonal group SO(1, 3).

def. A lie group is a group that is also a differentiable manifold such that the group
multiplication map and the inverse map are differentiable.

3 Lecture 3

In this lecture we expand the discussion of groups that we had a prelude on in the last
lecture, and future see the similarity between the Lorentz group that satisfies a certain
identity and the rotational group that satisfies another.

3.1 The Lie Algebra of the Matrix Lorentz Group

recall. We know that the two-dimensional Lorentz transformation for time and space is given
as

t' = ~y(t + pr)
o’ = (z + Bt)

(£)- (7] C)

Here gamma is given as v = 1/4/1 — 32, where 8 = v/c, satisfies —1 < § < 1, and
also is a continuous parameter for the specific transformation.

In matrix form,

cor. The fact that v2 — (v3)? = 1 allows us to take

~v = cosh ¢
v = sinh ¢
6 = tanh ¢



Letting us to write the transformation via hyperbolic functions,

[ cosh¢ sinh ¢
Lie) = (sinhqﬁ cosh qb)

-10

LinL =n=

== (30)

cor. The derivative of the matrix is—
dL(¢)  [sinh¢ cosh¢) (01 L(6)
d¢p  \cosh¢ sinh¢) \10
Considering the higher derivatives,

arn (o1)"
bl L
(01 s

In this manner, we can obtain an exponential expansion of the Lorentz transformation
like the following (also note that L(¢ = 0) = I)

1 foe)
¢=0_nzn! <¢>0>

=0

= exp{¢ (2 (1)>}

01
~ I
Notice that we can thus approximate
01 ! 01
I I R

thm. From above, we can deduce that 7 satisfies

T
01} (01} _,
1o "M\ 10/ "

we denote the group of all matrices n that satisfy this as SO(1,1).

Note that the matrix satisfies

> " d"L
L@)=) ——
nZ:O n! d¢




rmk. Notice that the Pauli matrices satisfy this, where

oo + 0% =0

thm. A great analogous situation is rotation on a plane, where

'\ [cos® —sinf) [z _ expf 0—6 ) x
y' ] \sin@ cosf y) Py o y
and where the matrix I satisfies
01 ! 01
I+1 =0
We denote all the matrices that satisfy this equation as SO(2).

thm. Like the examples above, the Lorentz transformations can be seen as a SO(1,3),
denote-able in a general form as L = eM ~ I + M. It should satisfy

LTyl = n = diag(—1,1,1,1)
being a Lorentz transformation the following approximation can be made.
(I+M)nI+M)~n
in an expanded form, we finally arrive at the key identity
M'n+nM =0

prop. We can use the identity we have derived above to give an explicit form for the Lorentz
transformation’s exponential M.

(nM)" = —nM
and from the above,

0 ¢z ¢y ¢

6, 0 0. -0,

¢y _02 0 ew

¢, 0y, =0, 0

We state without explaination that the three degrees of freedom for phi represents
the three boosts and that the three degrees of freedom for theta represents the spatial
rotations.

rmk. The submatrix of the matrix above is simply the rotation matrix, whose eigenvector

~10 -



for the eigenvalue of 0 is the principle axis constructable as follows.

0 6. -0, 3
Rij =1-60, 0 6, = Z Gijkek
0, —0, O k=1

]

Now, we find the eigenvector of the matrix above which shall satisfy

3
Z Rijej =0
7=0

this vector would be exactly the principle axis, expressible as

0 .
0=0-=00
99 0

4 Lecture 4

In this lecture, we consider the exponential map which parametrizes a transformation from
one reference frame to another. Then, we define and investigate the transformation proper-
ties of various vectors in space-time, namely proper distance, proper time, and four velocity.

4.1 The Exponential Map

def. An exponential map is parametrized map from one reference frame to another. That
is, 2" — a'*(z) = f*(\ = 1,z), and f*(0,2) = x*. We now calculate the first

- 11 -



n-derivatives of this function.

(57O = VAIO) = VA5
Ao = v = 900
)

e = L)
2
V()55 (VD5 VD)
= (V(h555) V()
o = (Vingg)" v

We can thus find the function above, using Taylor’s expansion, to be

) =Y g (dnf;(\:’m) |/\:0>
n=0

- i Srwgs) v ) he
= Z (( a?cr))nlvy(x))
_ go (Vo) o) o = exp{AVA ()3,

which is approximately z# + A\V#(x) + - - -. This tells us that V#(z) = dx* and that
the first derivative gives us information about infinitesimal difference as z# — x'*(x).

- 12 —



def.

def.

def.

rmk.

4.2 Four Vectors and their Transformations

We now define proper distance, which can be thought of as the invariant version of
distance in space time.
ds? = —2dt* + dx - dx

Proper time, in the other hand, is the above divided by ¢?.

dr? = dt* — dz - dx/c?
= dt"”? — da’ - do’ /P

Using this fact that there is this version of invariant time, we define covariant velocity.

Covariant velocity (four velocity)

dxt
Ve =
dr

It is worth noting how this covariant form of velocity transforms.

m v
VE = dx — Ludi = LHYY
dr’ Vodr v
where L, = da'*/dz”. Note that this quantity has the same transformation properties
as the infinitesimal displacement vector, where
ox'*
da'* = —dz"¥
ox?
This displacement vector transformed covariantly, thus considered a vector in space-
time. As such, it can also be called a (0, 1)-tensor. Meanwhile, it is to be noted that
partial derivatives transform oppositely (contravariantly),

5 ox

w ox'v

Oy

Such tensors are also called (1, 0)-tensors.

Noting that a vector can be raised or lowered an index using the space-time metric,
we discover that lowered indices transform oppositely from when it is raised.
Vi =V =0, LEV?
Ty—1 Ty—1
= [(L) " nlwV? = 1(L7) " [anopV?

=[(L")V,

~13 -



In other notation,

oxP 0x°
o o7 = v
ax/V
’r wo__
VM =NV Y= nMVWVp
oxP oxP
_ P —
N 8:5’“%0‘/ - Ozln Ve

rmk. At this point, we remark that the inverse of tensors have lowered and raised indices,
and that transposes simply change the order in which the indices take place.

5 Lecture 5

We now generalize the investigations of particular contravariant (sets of numbers that trans-
form like the proper distance vector) and covariant (sets of numbers that transform inversely
to the proper distance vector) vectors. After observing the transformation of a lot more vec-
tors in space-time, we reconstruct the theory of electromagnetism in terms of tensors and
motivate our reasoning for using tensors to describe physical phenomena: we want a frame-
work invariant of reference frame (i.e., we want 0 to remain 0). We finish off by noting
that gravitational potential only exist in rest or uniformly moving frames.

5.1 Contravariant and Covariant Vectors and their Transformations

recall. Consider the following coordinate transformation z# — a/#(x). We can consider the
transformation for an infinitesimal

oz’

dr¥ — dz'* = dz¥
oxv

through the direct application of the chain rule, we identify that the vector transforms
covariantly. The inverse relation works for the partial, where

ox?

ox'H 0o

0y — =

we also consider the case for the Kronecker delta, and

, oxP oz .,
5# — Ozt 9o P T 5#

lastly, for the case of the space-time metric,

oxP O0x°
Nuv — wwnpo = Nuv

— 14 —



Consider how Poincare transformation works on lowered and raised indices.
OxP 0x° oz’

_ Vo I A

dzy = dz,, = a9z P G de

OxP o x OxFf
= wnl)gé}\d'x = wdﬂ?p

for the partial,

or!, oz oxt
o =0, =0 dzp 9zo | Dl O
oz’ oz'™ oz’
= — po(;)\ = — P)\ - _HP
OxP 07050 OxP "o OxP g

for the proper time, however,
dr — dr' =dr

thus motivating its use in the covariant form of velocity.

def. We define four velocity as the derivative of proper distance against proper time, and
we can observe that it transforms contravariantly.

@ R dz'® B ox'* dz¥
dr dr’  Oxv dr

cor. A great property of the four-velocity is that it satisfies the following identity. Which
comes directly from the definition of proper distance by dividing both sides by dr.

dzfdz” o
dr dTmW_

This fact is obvious once you consider z* and x¥ to move along the particle whose

proper time is measured. The time derivatives of the spacial components would be

zero and the result is trivially —c?.

def. Four-momentum is simply four velocity times mass.

dzx,,
=m—
Pu dr

cor. Contracting four momentum using the spacetime metric, we obtain the following

~15 —



familiar expression for energy.

P = p* = —m?c®

(po)* —p-p = m*¢
b= VEE TP
po = mey/1+p - p/m?c
~mc+p-p/2mc+---
Exmc+p-p/2m+---

5.2 The Formulation of Electromagnetism using Tensors

rmk. The reason why we write the four-momentum with lowered indices is because it
naturally arises in Lagrangian mechanics.

_oac
Pe = 5,020

def. The reason why we want to write physics in a covariant manner is because equa-
tions must be tensorial for things to be conserved. To display this, we investigate
electromagnetism. Lorentz force in non-relativistic cases can be written as

ma =qu X B+ qF

In relativistic cases,

2 .14 v
d°x g dx
dr? dr

where F),, = 0,A, — 0,A,. Note that it is empty in its diagonal (), = 0) and is

m

antisymmetric (F,, = —F,,). In expanded form,
'mci;";l - ngCZ) - nglcilf + sz%C;f
mcf;il —qF(?C?TO +qF226?:+qF326f
mfjil - ngil“f - ngcif: + ng?Cff:

~16 -



where
E./c B, By B,
Fu.=|Ey/c B, By B,
E./c B, B, B,

prop. We derive that the electromagnetic potential transforms convariantly and that the
tensor F' transforms covariantly twice.

;o oz
Aulw) = A (&) = 0o Ax(a)
Fu(z) — F/W(a;’) = QLA:, — BLA'H

oxP o0x?

~ ol p((?:c”’Aa) ~ew)

0%x° oxP 0x°

= owror 7 T own oa pAs = (1)
oxP 0x° o0x? Ox”

= DM Oz Opds = ox'v oz’ 9oy
oxP 0x°

- Ozt Hx'v po

HW. We can do something similar with the F' tensor with one upper and one lower index,
and it multiplied with four velocity.

T
_0x't 50" OxP Ox”
R A
. 8:1?/“ af 81’0 -
R
0™ 0z,
- 0z v C

HW. A simple corollary would be transformation for the F' tensor times the four velocity

dz? dz¥  Ox'" _,dzV
FH Uy — A
A N LT

thm. Finally, we see how the Lorentz force transforms between reference frames.

A2z dz¥
. A7 -0
m dr? Yodr
d2$/,u,

m

Lde’ da't o dPa? dx”

—qF) = (m —qF) >

dr Yodr da? dr? Yodr
=0

The highlight is that zero-force is remained that way in both reference frames.

17 -



cor. A simple corollary from above is that four-acceleration times four-velocity is zero.
Observe that,

dz, A2z dx, dz¥ dzt dx¥
. = —4q # =l —— —F— =
dr dr? dr dr dr dr
as
detde” 2
dr dr My =

cor. A following corollary is that in this framework, gravitational potential doesn’t exist.
We first define gravitational potential as

d2zH
me"_
dr?

— "V

However, suggesting that such potential exists would lead us to a non-vanishing four-

acceleration times four-velocity.

A2zt dx? dzx
e — A
md7'2 dTnW 8Vd7_
dz*
=V
d
= Ly (a)

As the four velocity times four acceleration is always zero, either the derivative of
the potential (which is acceleration) is zero or the derivative of the proper distance
(which is velocity) is zero which implies that the reference frame we are referring to
is either in rest or moving in constant speed.

6 Lecture 6

In this lecture, we rewrite Mazwell’s equations in terms of tensors. After we do so, we
prove Poincare’s lemma for (0,2)-tensors by stating an explicit form of the potential func-
tion, therefore proving that electromagnetic force has a potential function in all reference
frames. We shortly deviate and prove Poincare’s lemma for vector functions (which are
(1,0)-tensors). We finish off by suggesting an alternate form of current density and thereof
showing that the derivative current density is zero, ultimately proving that current density
1s a conserved throughout space-time.

6.1 Maxwell’s Equations in Terms of Tensors

def. Using the covariant framework that we have created, we can rewrite Maxwell’s equa-
tions in terms of tensors as

D F = Y
GAFW + 8,uF1//\ + 81/F)\M =0

~ 18 —



6.2

thm.

pf.

rmk.

pf.

Here, we note that F,,, = 0,4, — 0, A, and that J" = (p/c, J).

Poincare’s Lemma

Poincare’s lemma states that when a force is conservative, there is a potential function
for that force.

We can prove this by explicitly showing that such a function exits. We first claim
that it has the following form.

1 M
drs
Ay (x) :/0 SFW,(QS‘S)% ds

Here, we use the notation x5 = z(s). Note that the variable x is parametrized as a
line segment in terms of s.

zh(s) = (at — zh)s + zf

(s=1)

zH(s =1 K
xH(s =0)

ox

xT
T

To verify that this is indeed the potential function we ought to find, we derivate,
obtaining

p
dzs

0uu(2) — By Au(x) = 0, /0 1 $Ep )% ds] — (5 )

L, o dx? 0 dx?
2 2
:/o § 8$MFPV($S) ds 8 Fp(@s)0) =5 GxVFp“(xS) ds

s S

— sF,,(z4)00 ds

1 0 dx” 0 dx?
2 2
= /0 g fogs T o Fuel@s)0 g Fun )
+ sFy,(x)00 ds
LodxPr 0 0
:/0 SZE [@pr(azs) + TJ:ZS’FMP(:CS) +25F,,(xs) ds

1
oxf 0
:/0 —szga—ﬁFqur?SFw(xs) ds

:/01 aas[stW} ds

=F,,

In the constructed potential function above, we can add any function whose partial
vanishes (such as 0,4 for any function A as 0,0,A — 0,0,A = 0). This is symmetry
between fields are called Gauge symmetry.

We can do something similar for vector functions where we claim that the potential

~19 —



has the following form.

L da,
Vv —/0 I f(xs) ds

oV = 8/dw5 (zs) ds

da:safz( s)
/fz s ds 61 ds

d:ns@fl(:zs)
/fZ 7s) *ds or} s

/ o +550) g,

- /0 ds [Sﬂ(‘”s)} ds

= fi(z)

then,

6.3 Current Density as a Tensor

def. Consider a group of charged particles whose trajectories are parametrized by proper
time, which we also will refer to as the worldline parameter (the trajectory is a
function of proper time, z4,(7)). The current density vector can then be expressed as

(1
)= 3 [ 050 — g () ar

here, 6 (z—z(7)) = 6(2°—2°(1))d(zt =2 (7))---6(2® —23(7)). It is important to note
that this expression is equivalent to the aforementioned expression J* = (p/c, J).

pf. We show that the derivative of the current density is 0, being a conservative quantity
throughout space-time.

97 =[S [ 850 — () i

= Z/qan(SM)(x — x, (7)) dT
_Zq 5 x_$ )) T=+00

=0

T=—00

—90 —



def. We introduce the covariant derivative through observing what kind of derivations do
not change the physics of wavefunctions despite phase change. Consider the transfor-
mation ¢ — e’ = /. Schrodinger’s equation becomes

IS U

Schrodinger’s equation only works when you define a new derivative (minimal cou-
pling)
Oy — D,y =0, —1i4A,

Here, we state that A, — Aj = A, + 9,0. Then,
Dyt = D' = 9,0 — i Al
= e’eDMw
= (0 + 10,00 — i A))

7 Lecture 7

In this lecture, we define what tensors are (objects that transform contravariantly or co-
variantly) and introduce weights, which are how tensors scale when transforming. To finish
off, we introduce the concept of Vierbeins, which are metrics that allow us to convert to
locally falling frames.

recall. Before delving into the main topic, we again refer to how certain tensorial objects

transform.—
Oz
Vale) = Vi) = 55 VA ()
V() = "V, (x) = V(')
ox? oxP

Nuv = W”pow

1= (5)n(5m)
B b I\ T 3 o /
= (o) (%)
_ Oa™ Oz

po

4
- 8:10?77 o0x°

77#

- 21 —



7.1 Tensors and their Weights

Using the above, we show how tensors with upper indices transform.

ox'* _ox" ozt

uvy sl —
’r] Vl/<m ) 8xp 77 axo- ax/yv (x)
A
= S V(@)
i
V(') = ZZ ~VP(z)
= ALy

cor. We can do the same process as above and show how lower indices transform using
how upper indices transform.

Vit = AbYP
V)= (/1—1)31/A = VA(A‘l)ﬁ
= AV
Note that
ATpA=n
nA = (A")"1ny
nAn~t = (A~ HT
A = (A—l)g

rmk. In representation theory, we look at matrix representations of group elements (in this
case coordinate transformations). In reference to the matrices above, we can see how
the matrix representation of a certain transformation is equal to another transfor-
mation’s (the inverse transformation) transpose. Mathematically, ¢ — M(g) =

(M~Y(g))T. In this way, the group of inverse matrices’ transpose model the original
group’s behavior.

g192 = g3
M(g1)M(g2) = M(gs)
M(ga2)~ lM(gl) t= (9)
1

(M(g1) ™) (M(g2)™H)" = (M(g3)™))"

def. We define a (p, q) tensor to be a list of components that have p upper indices and ¢
lower indices.

Tyl (x) = T (2f)
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which is equal to

H Hwax"‘l ox'tz Qalte 5 .p, Ozt Oz
OzPr dxP2 OxPr ~ 71779z Qv
def. We define the weight w as
H*H“’ = H H_“’
recall. We defined the current density as
3 n(
D=3 [T )
d
= an/ dx%dxo )z — x,) da
dxh

this is equal to

dx,

Y onln p (5(3)(56—.’15’”) =J

This is due to the fact that

[ s =01 da = 10

75(9[; —y)f (") do’ = f(y())

8 /

implying

SO ) =192

'6@(z —y)

When the weight is 1, we refer a tensor to be a scalar density while referring to tensors

with higher weights as vector densities. Note that we are generalizing the notion of

tensors here. We are also including objects that scale as they transform.

recall. We know for a fact that o — 2/#(x),

oz'™

dzt — dz'™ = —dz"¥
oxv

In general relativity, we state that the metric is g in general cases, a function of x

which is symmetric under the lower indices. It is a (0, 2) tensor.

Guv (.’E) = guu(m)
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7.2

def.

def.

After the coordinate transformation, we state that

oxf 0xP
g/“/($) - g;w(x,) = o't ngg(ﬂf)

and ox't 9™
g (@) = () = S ()
Note that
! Ox 2
9= llgwll =g =157l
and

ox
V=g —=v—-g = H%Hv—g
which tells us that the negative square root is a scalar density with w = 1. The
following is thus a tensor with a weight of 0.

59 (2)/V=g

Verbeins

We now introduce the concept of Verbeins. Simply put, Verbeins are transformations
from a curved frame to a local Lorentzian (flat) frame which we shall denote as y*.
We say local from the fact that this definition only suffices locally as tidal forces
occur as you move further from the exact point that we are transforming from. As
you move slightly from one direction to another, you are no longer in a inertial state.
This coordinate system we are transforming to is also called the Riemann normal
coordinate system. The proper distance in this frame would be given as

v Oyt - 9y”
ds? = Nuwdydy” = nyyd:v”wdx D®
oyt oy”
— AP dron 2T
dx”dx"n,,, 9P Da”
= d2"dz? gy

Note that the function g would be a function of z* as the transformation to the

locally inertial frame would vary from point to point.

We mathematically formally define verbiens as
gpa(‘T) = 62(95)62(95)%17

a, b runs through 0,1,2, and 4. We can also express veribeins as

a 9"
e (X) = @\x:X

In this perspective, verbeins are functions that take in points in space-time and give
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transformations from curved spacetime coordinates to locally flat coordinates.

8 Lecture 8

In this lecture, we use the verbeins to define the Christoffel symbol, which show how basis

objects transform.

8.1

def.

cor.

rmk.

def.

More on Verbeins

Using the space-time metric, proper distance is given by
ds® = g, (v)dz*dz”
In turn, the metric in terms of Vierbeins can be written as
g () = €5 ()€l ()b
Here, vierbeins are functions of x* as

arvy _ OUk (@)
€M(X) o 8:}5“ =X

A simple corollary to our new definition of proper distance is that proper time is
given as

1 1
dr? = ——stz = ——dz"dz" g
c c
A special fact about verbeins are that they transform like tensors for the alphabetical
indices as we can easily change the Lorentz coordinate system we are transforming
from. Thus,
b
eZ(:):) — e;f = euL‘g(x)

The space-time metric, however, would remain invariant, eZegnab = e;fe’ybnab, as

Lngncd = Nab

In this manner, we can reformulate all transformations that we have mentioned in

the following manner.

at — o't (x)

7z
dzt — dz'™ = 8Lal:z‘p
OxP
dr — dr' = g (z)datdz” = g, (2")dx dz"”
_ Oxf 0x°

g/“/(x) — g:w(l‘/) - @ngn(‘r)
@ . dx'H B ox'* dzV
dr dr — Oxv dr

— 95—



8.2 The Christoffel Symbol

prop. We now consider how acceleration transforms from one frame to another and find the
necessity of another geometrical object.

dxt AP d (837’“ da:’\)

dr? - dr2 ~ dr \ 9z dr
_ Oz 9%t N i(&x’“)%
- Oxr 012 dr \ Ozr /) dr

ox'* d%x? n di"ﬂ 02 zm
oz d?1 dr dt 0x°0zxP
o' .\ ., ., 0%
9z T 0xPOx°
oz’ oxr 9
(../\ j}pjjg)
oz Ox'H OxPOxo

xT

where we use the notation ## = da* /dr. We can alternatively express the above using
the coordinate system of a locally lorentz frame as the frame we are transforming to,
and acceleration would be

dea B 8ya (x)\ 81'/\ ach J-/,pi,cr>
dr2 Oz Oyc 0xPOx°

The term we are interested in, and want to turn into in terms of the metric is,

oxr  0%y° _ 0 o
Oye Oxrdxe € OxP °
0
_ Agb Y ¢
- eb(scaw,pea

= epecpe” e

b 0

oxP
= —gM (Dpenc)es + g”“(;ngw
= —g""(Orepc)es + g“(;ngm

There are a few points refer to. In moving from the second line to the third, we
expanded the Kronecker delta into two verbien terms which follow from the fact that

b bd
€rce’ = €pnacn ey

with a being a free variable,

bk d bd K b
erce’” = €, Nacn ey = O,
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def.

lem.

def.

rmk.

thm.

Therefore,

653: _ gzz i +gAn< o — (Depe)e )gbp:-ca}
= gzj\ A —|—g)\n< b Gro — (Onepcel) + €pc(3,ie§.)>}
DO e o
=555+ ( v Gko — OnGpo + (Onepcel) _eg(aﬁepc))]
= gzi P 4 29)% (8,;9,«, — angpa + 809,@)55’)9&“}
= gzi _jA + %gAn(apgm + 00 Grp — aﬁgpa)ipio}
= % (55“ + Fg(,:t%o)

The symbol gamma is referred as the Christoffel symbol, the diffeomorhpism connec-
tion, or the affine connection.

1
F;),\LV (.CL') = ig)\p (augpu + &/g,up - 8pg,uy)

Note that for the second line to the third line, we have utilized the following lemma
for tensors symmetric in the lower two indices.

We thus obtain the following equation

Y N pav
4+ I,,e"" =0

In most the space-time metric can be approximated by the minkowskian metric and
an additional pertubation term.

uv = Nuv + 5g;l,u = Nuv + h/ﬂ/

We now show that we can approximate Newton’s gravitational potential through
assuming low speeds. In the majority of times, we refer to a stationary reference
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frame with & = (&, &) ~ (¢, 0,0,0). Thus, we are capable to approximate the geodesic
equation as
0 =i +1T,d"" ~ i’ + *Tfy

where 1
00 = 59”\ (30%0 + Jogox — 5,\900)

which is approximately
1 9
~ Ty goo
substituting, we can approximate a particle’s acceleration as
i 21i L 9.
'~ —c Foowic 0" goo

we hereof state without explanation that when solving this equation, at low speeds,
we have the metric to be approximately

2¢

o0~ —1—-——
g 2

which is Newton’s gravitational potential.

9 Lecture 9

9.1 Calculus of Variations

recall. We said that the acceleration of the LLF can be expressed as
va _ alap L oapao
] —eu[l' + I'pil
Where the Christoffel symbol can be written as

1
Fgo = 59'[“/(8/)91/0 + afgpu - augpcr)

Also recall that the space-time metric can be written as

g () = €5 ()€l () ab

where
_ oy

- Oz le=Xx

€ (X)

prop. Consider a line parametrized by a parameter lambda. The end points are denoted as
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A1 and Ao. The path of shortest length can be described by the following equation.

A2
0=5 [ i2+g2dx
A1

A2 2564 4 2007
= =22 4\
/)\1 2/1% + 92

I (L)M i(#) O\
v Nt Y\ e
the last term follows from integration by parts. We now know that the terms in the
parentheses vanish (we further assumed that dz =0 at A = A; or A = \a).

rmk. We want to show that the parameter lambda is best set as distance. Consider taking

A —= N(X), and
o
dA Wd)\
b _ N
d\  d\dN

LG+ () o= [ G+ () o
:m\l

Thus we choose the parameter A to be distance for the final line. With a Gauge choice

of /#2492 =1.

prop. We now finally use the variational principle to derive the geodesic equation.

S = / \/—gw(x)i/‘x'l’ d\

T it v
0S = / — IR - C d)\
2\/ =gty
_ / —(5:(:)‘8)\gw,x“a: — gudTHTY — gt oT”
2\/ =gty
:/ 53:/\8>\gu,,x“m P d ( " ) G " )

L d
2\/—9,1,,3:“96 2\/—guhav d)\ <2,/—g,wx/‘x”
e d L y d .
= / —5595“(%\9#,,3:“36 + idx“a(gwx ) + 553: a(gw,x“) d\

1
= / =502 Or g i + 0a" (g + i O\Gu ") dX

dX

U ]- v "
= /6x“g,w <CC + 59 p(a)\gpa + 809;))\ - aﬂg)\o)x )) dA
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10 Lecture 10

In this lecture we create tensorial version of a derivative (the covariant derivative).

10.1 The Covariant Derivative

recall.

o

Vi) = V(') = ?;; .
0z° O 0z
ogr 9 p
o0z’ dx° ( OxP v )
_ 0x7 Ox'H , 027 b p
-9z dxp oz’ 0x 0P
ox? ox?

oz U(@x’” V,,)
o0x? O0xf 02

= 0z drln 0 Vo + O/ dx/m

VP(x)

(9)\V“—>83\V/'u:

8,\VH — a:\Vl: =

7

lem. In this lecture we prove the following lemma for second derivatives.

0P ox¥ 0 0z
dx P/t~ dx Dav (Baj’ﬂ)
_ Oz¥ 9aP 92’ 92
92 Q' Dz OB Ol

and thus
ox’"  0%xP Oz ozl 9%

OxP O oz da' da't Dx DB

not different from
oM~ = Mtomm—1

and
oMMy =0

prop. In this lecture we will consider 0xg,, — 03\gl’w and see how the metric transforms.

orY 9 ;0x® 9P
af\g;“, = 92 Oz (ax’“ ox'v gaﬂ(ﬁﬁ))
_ 0x7 9z Oz 2z 9xP  9r®  9%4P
92 92'8 oz v9ap + (81‘”‘31"“ ox'v + ox'm 893/’\8x”y)gaﬁ
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now, calculating the transformed Christoffel symbols,

1
A A
F,Lw 259 p(augp'y + &/gup - apg/u/)

1
T =59™(09p + 0,9 = 09/)
192" dx'P oxY dx* dx°
:i 8:,Ua 8$ﬂ gaﬂ [ax/ﬂ 856"’ ax,y 8'ygka(a’ygka + 80'9](}’)/ - 8kg’YO')
e 9xP  x™ 9% x> 928 Ox™  9%aP
(82x’“8x”’ ox'  Ox'P Ox;» Oz’ Qx'vOx'P Ox'm  Ox'P Ox'V O
or2x® 0zP or®  9%zP
- xlrdx Dt v Bx’Pax/l‘)gaﬁ]

19z 9z dz°
=5 5 o o (Or9ko + Doy — Ougre) +

Az’ ox'P o o™ 9%aP
g 9ap
0x® 0x¢” Oz dx'HOx'HOZV

0z 027 Qa2 _, . 02" 0%aP
0z Ozt Oz 7 QxP Ox'mOxv
0z 028 9a7 ra %z

- Oz (8:5"“ ozl P ax’“ax”’)

and therefore

0x® 0z 0%z
8MV1/ — (%V,,' = D Waa‘/ﬁ + an
ox® 9z ox~ _, 028 927 _,
= Ox'k Ox'V 9V + (&T’)‘ F/W O 9V ﬂ’Y) Va

ox® 9z ~ A o
= ox't o' (8O‘Vﬁ - Faﬁv7> + F,LLI/VA

We thus identify a covariant form of the partial derivatives

oz Oz
a//j/vl// - F,/l,LpVV/J/ = Ox't W (80“//8 - F35V7>

Thus we define the covariant derivative to be

ViV = 0.V, — T, Va
With the vector having a upper index,

V.V =8,V" + T,V

thus for an arbitrary tensor 7',

P q
p1pp 1 P ittt b poftl e i ApfdL e P pHLp
VTS = ONTUEY — wh TUU ATy + 3 TR iie =3 1%, Th,
i=1 j=1
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11 Lecture 11

In this lecture, we learn a central assumption regarding general relativity, which is that
there is no torsion in spacetime. This is equivalent to saying that the Christoffel symbol
is symmetric on the lower indices. We also learn how the metric is covariantly constant,
meaning that the covariant derivative of the metric is zero. We finish by showing that there
always exists a frame such that the Christoffel symbol is zero. This frame is also called the
Riemann normal coordinate system.

recall. Last class, we saw how the Christoffel symbol transformed, namely

Oz 92° 92, () 0%xP O™
9z 9V Ok PO o0x'Hdz"V dxP

Ffw — F;jy(:c’)

the partial, on the other hand,

P v
0,V (2) = LV (') = 22 (M Vo)

9z \ OxC
Oz 02 Oxf 0%
9z 9z P ox'* dxPOx®

The second term of the last equation is equal to

@i(@x”’) _ 0 (83:”’)
ox'* OxP \ Ox° ox'* \ 0x°
_ 0al® 0%xP Oz’
T 92 92/mOz'E QP

and thus we obtain, continuing from the partial transformation,

_ OxP Oa . Ox't QPaf 9
) i 0x% 0x'*0x's JxP

g

11.1 Torsionlessness

def. In general relativity we assume no torsion, with Fl’\“, = F,))#. We define torsion to be
Ff\w — Fl’}u (thus the Christofell symbol is symmetric in its lower indices).

11.2 Metric Compatibility

rmk. We state as a fact that Vg, = 0 and that the metric is covariantly constant ( <=
V. and g,,, are compatible). In this case, we say that the ”connection” is torsionless.
Then, the ”connection” is the Christoffel symbol. Consider adding

v)\g;w = 8)\guu - Fl))\ugpl/ - Fiugﬂp

and
+vugu)\ = 8ugu)\ - FﬁygpA - FZ)\gl/p

~32 -



HW.

def.

thm.

and
_vyg)\,u = anAu - Pg)\gﬂu - Pﬁug)\P

which is equal to
0= V,\g,w + V,ugzl)\ - vl/g)\,u = 8)\g;w + 8ugu)\ - 8Vg)\,u - 2F§Mgpu
and we thus conclude

1
= §9Vp (a/\g/w + Ougnp — apgku)

The homework was to vertify that Vg, = 0 by inserting the definition of Gamma
into the equation above. Plugging our definition of the Christoffel symbol into the
first equation we obtain

1, 1
v/\g,uzz = 8)\g,ul/ - igp (a/\guu + 8ug)w - 81/9/\;,L)gpl/ - 59'[)#(8)\9“1/ + aug)\u - a,ugklf)gup

which is indeed equal to zero.

11.3 The Riemann Normal Coordinate System

In a locally inertial frame (freely falling frame) the certain equality would hold

= 77/“/

g
o

The fact that space is torsionless, we are able to say

=0

19)
A uv =0

We now prove that a frame exists such that the Christoffel symbol is zero. Consider
the geodesic equation
i 4T, @t =0

We say that the initial conditions are given as

{a:“(m) = zf

() = V'
The unique solution would be given as

(7)) = (7,20, V)
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where
f”(’]’o, zo, V) = 955
df™
C%_(To,xo,V) =VH

For a constant k, we consider

fu(Ta Z0, K:V)

fM(K(T - 7—0) + 70, Zo, V)
which would both satisfy the equation as

dfr (a0, V)

dr dr’ 7' —=KT

deM _ ,{2 dzfu(T/a Zo, V)

dr? dr?
now, consider a coordinate transformation from z* — v*.
:UM(T) = fu(T, Zo, V) = fM(L Zo, TUO) = fM(L Zo, U(T))
In this frame, which we call the Riemann normal coordinate system,
v (r) =TVH
and
R

dr?

and thus the Christoffel symbol is zero.

+ T8 oP =0

12 Lecture 12

In this lecture, we delve into weights of tensors, which are how they scale of a power of the
reciprocal of the Jacobian as they transform. Then, we see how we can calculate variations
of a determinant of a function. By doing so, we notice that we need a stronger condition
for which space-time is flat. We then derive the curvature by seeking a covariant tensor
constructable with double derivatives of the metric.

12.1 Weights of Tensors

recall. Consider the following statement about the metric tensor that suggests that the
metric is covariantly constant.
v)\g/w =0
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thm.

thm.

Simply put, this face implies that the space is flat up to the first derivative of the
metric. Also called metric compatibility, it implies that the covariant derivative is
constructed in a way to keep the metric constant.

On another note, now observe the transformation of the metric tensor

oxP 0x°
v (%) = 9 (@) = 520 50 9po ()

The metric’s determinant can be seen to scale like the following.

g = det(g(a) = det(g' (1)) = ¢’ = || 02 |I%

Note that we have defined g to represent the determinant of the metric. We thus claim
the metric to be a tensor of weight 2, and its determinant to be a tensor density (not
a tensor) of weight 2. The determinant of the negative square root of the metric is

thus a scalar density with weight w = 1 (here, we define the weight to be the power
of [|0xz/0'|| not ||0x’/Ox|]).

oz
V=9 —=+V—¢ = H@H\/—g

12.2 Derivative of the Determinant and Divergence

The determinant of a n x n matrix can be derivated as follows (the determinant’s
variation).

HMH = Z ealmaanmMQaz et Mna"

a1, ,0n
n
Sl = 3 (3 a0 )
ai, - ,an Jj=1
n
_ Z €a1~--an<ZM1a1 T 52j o Mnan>5Mjb
a1, ,0n -7:1
n
_ Z 6a1---an<z M1a1 e Mcaj e Mnan> (Mfl)bc(SMjb
(ll,"',an j:l

— Z Z (6a1"'a"M1a1 . Mcaj . Mnan)(M_l)bc(SMjb

at, +,an ]:1
n .
= > M55 (M) oMy, = || M||(M )6 Mg,
j=1
thus we obtain

o[ M| = [|M]|(M )6 M,
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dividing both sides by the determinant,

of|M|| _

— Mfl ab(SMba
i~ M)

we can express the left side as the variation of the natural logarithm of the deter-
minant, while the right hand side is a summation over all permutations of a and b.
Doing so, we realize that it is equal to the trace of the matrix product M ~15M.

§In||M|| = Te(M 16 M)

thm. Now we return to the metric tensor. Derivating the determinant of the metric and
the negative square root we derive that

aug =g gpgaugap

1 1
/=g = ———0,9
H 2\/jg I
1
= 5\/_9 gpgaugap

However, we know that

1
F;);V = §g>\p(augpu + &/gyp - apg;w)

1
F;);/\ = igAp(augp)\ + a)xg,up - ap.g,u)\)

Thus we obtain the expressions

a'u\/_ ==\ —g 1—‘2)\

In general, the covariant derivative of a tensor density becomes
Vi 0~
v~y —urf,mi + () - ()
J Kk

This is why the following hold

Vug=20
Vuv—9=0

rmk. Take the current density. It can be easily noted how our definition lacked the notice

— 36 —



of it actually being a tensor density.

ox'*
TGy - T) = || 25 O

V" = 8,J" = aMJ“ S A L VI

thm. A cool trick can be done for (1,0)-tensors of weight of weight zero or w = 0 (vectors).
The divergence simply becomes

V.V =9,V Tl VP
= g4 Iy

= =0V=a V")

def. If you observe the proper distance in terms of spherical coordinates,

ds? = —dt* + da® + dy® + d2*
= —dt® + dr? + r2d0? + r? sin® 0d¢?

= gul,dx“dwy

using these coordinates, where x* = (t,r,0, ¢) rather than x* = (¢, x,y, z), we notice

that the metric changes from
—-1000

0100
0010
0001
to
-100 0
010 0
00r% 0
0 00 r’sin?0
The metric in the upper case leads to Fﬁy = 0 while the lower metric leads to
Fz‘y # 0 with \/—¢g = r2sin?#. We conclude that we need a more concrete condition
for a certain space to be flat. The answer lies in the curvature of that space. Note

that
x = rsinf cos ¢

y =rsinfsin¢g

z=r7rcos0

r=+x2+y2+22
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note.

def.

13

12.3 Curvature and Riemann Curvature

We then ask the following question: can we construct a covariant tensor from )¢, ?
The answer is no! However, we can construct a covariant tensor from double deriva-
tives of g,,,. The answer is curvature.

The curvature is defined as the commutator operator operated upon two covariant

derivatives, or

(Vi Vi

we note that
[0, 00

We now calculate the double covariant derivative of an arbitrary vector.
VWV, VA =0,(V, V) =% V,V* + T V,V7°
= (O, V+ T, VP) =T, (9,V* + T, V)
+1),(0,V? + T, V)
A A A
= 0u0, V" + 0., VP +T7,0,V°
— 0,0,V +T) Vo) +T7,(0,V? + T, V)

Considering only the remaining terms, we obtain

[V, VIV = (9,1, — 8,10 )V + (rA N )va

up= vo vpT po
= (0uT0g — L)y + T, I0, =T 0 )V
=Ry, V°

We thus write the Riemann curvature as

R§,, = 0uTy — O,y + T 0, —T0 I

where
V.,V VA =Ry, VP

In other notation, using I';,,

ES
R*y,u

= (aMF/W - 8VFM + [Fw FV])I

curvature can alternatively defined as the field strength of curvature.

Lecture 13

We investigate important properties of the curvature tensor and introduce the Bianchi iden-

tity.
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def. The levi-civita symbol is defined as

+1 even permutation

eaazan — ) 4 odd permutation

0 otherwise
def. The determinant is defined through this symbol as

|| M| = Z € Myay -+ - Mna,

ai,an

recall. The important theorem from the last lecture was
§ In||M|| = Tr(M~15M)
and from this, we have the following corollary
ullgll =217, [lgll

with V,[|g]| = 0.

thm. From the above, we theorize that tensors with different weights transform like the
following. As a density,

ox"
but with a weight w,
or' .,
@T%%T:%@Eﬂ ﬂ
ox' _,, 0x" oz ox™ 9%a'P
== 0, T — w||—|~" —
I ox ] o' wl Ox I Oz'P dxrdx

(notes on weight redacted)

13.1 Properties of Curvature

recall. We learnt that curvature is defined as

Vs V,,]V)‘ = R;Auva

where

R;\W = (OuT'y = 0,Ly + [Ty, Pu]);\

— A A A A
=0y, — 0,1, + 1,10, =17, =T, 17,
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What about of the general case?
[V, VTR
for now we first note that for vectors with lower indices,
Vi, VulVa =V, V, VA — (1 & v)
= aﬂ(vVVA) - FﬁuvPV)\ - Fﬁl/vl’v:o - (:u A V)
= 0u(8, VA —T",\V,) — FZ)\((‘?VVP =17, Vo) = (u < v)
= _R//{MVVP

recall. Given the following way that the Christoffel symbol transforms, we can see that the

curvature transforms covariantly.

ox' OxP 0x° _,.  Ox" %P
ox® Ox'v Ox'v P7  OxP Ox'FOx'v

A I
FW — I‘W =

this is left as homework, to check that,

A\ A 02" 0x7 Oz 02F
By = By = oxt dx'P f'm Ha'v 7P

def. The object RQW is called the Riemann curvature. There are many characteristics

that are important regarding the Riemann curvature. Suppose lowering the indices,

— P
R/-c)\p,u - g“PR)\uV

R/{)\uu = _Rn/\uu = _RAH},LV = R)\m/u = Ruur{)\

rmk. A trick regarding obtaining the relationship above, in the local inertial frame, Ffw =0
and 0,9,, = 0. The curvature becomes,

R)\p,ul/ = aﬂ(g)\argp) - al/(g)\arlojp)

1 1

= iaﬂ(al’g/\ﬁ + 8,091/)\ - aAgup - Qau(aug)\p + apg,u)\ - 8)\gup)
1

= 5(8,Ltaug/\p =+ 8,uapgw\ - 8uaz\gup - 8V8,Ltg)\p - auapg;m + aua)\gup>

1
= i(a,uapgu)\ - 6u8Agup - &japgu,\ + 8u6)\gup)

13.2 The Bianchi Identity

def. Any commutator satisfies the Bianchi identity,

[A[B, C]] + [B[C, A]] + [C[A, B]] = 0
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As a commutative operator, it also works for the covariant derivative, and

0= [VA[Vy, VL ]JVT + (cyclic A, p,v)
= VaA([Vu, VuIVE) = [V, VUI(VAVT) + (cyclic A, p, v)
= VA(R5,V?) — (R, VAV — Rf\’WVpV”) + (cyclic A, p, v)

= VARS, VP + RS, V\VP — RE V\VP — Rl Y, V" 4 (cyclic A, 1, v)

ppv ppv ppv Apv
- (V)\RZ;W + VFLR;V)\ + VVR;)\,LL)VP - (Rf{uy + wa}\ + Rﬁ)\ﬂ)vpvﬁ =0

in result, we obtain the differential Bianchi identity,

VARLS + VRIS + VRS =0

v

also,
v)\Rpa,uV + vacr)\,uZ/ + VO'R)\[)MV =0
thm. If and only if R}, =0, one can find a coordinate system where g, = 1., i.e., flat
space-time.

14 Lecture 14

In this lecture, we learn the commutator and permutator operator and relevant notation.
Afterwards, through the Bianchi identity, we derive the FEinstein curvature, arriving at
the Finstein field equations. As a constituent of the equations, we investigate the energy
momentum tensor for electrodynamics.

recall. In the last class, we defined the Riemann curvature as

RY,,, =0,T%y — 0,T0y + T, I0 —T5, T

Rri)\w/ :Ruun)\ = R[H,A}[u,u}
VinRujpe =0
14.1 Commutator and Permutator Notation

def. With the commutator notation in the lower indices, we write (for tensor Th,x,.-x, ),

1
T[>\1)\2---/\n} = Z msgn(U)T)‘U(l))Aa(Q)'"Aa(n)

g

Where o denotes a permutation for a totally anti-symmetric tensor. For a totally
symmetric tensor, we obtain

1
T(>x1/\2~~->\n) = Z ETAU(I))‘U(Q)"')‘U(n)
o
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thm. Using this notation, we can rewrite tensors like the following.
Fu =0,A, — 0,4,

1
=-M(M, + M,,)

M) 9
Flw) = F
My = %(M/w = My,)
O F) =0
G = Y(uw)
= %(&FMV + 0, F\, + 0, F)\
) =0

1
= 6(6,\Fw, —oar)\Fy, +---)

My = My + M)
en)\uu _ 6[&)\;11/]

14.2 Ricci Curvature

def. We now use metric contraction to create a expression with 2 indices. We state that
there is only one way to contract two indices from the expression above, and we call
the result the Ricci curvature.

_pA _ pA
R,ul/ - R,u)\u - RMV)\ - RVN

The Ricci curvature can be again contracted by the metric to give a scalar curvature.
R=¢"R. =R},

Note that the order we went through was Riemann, Ricci, and scalar curvatures. In
low dimensions, these are identical.

recall. The Bianchi identity was given as
v)\RMVpU + AMRU)\[)O' + VVR)\/,Lpa =0

When contracting each term with the metric, we can only choose one from the first
three and one from the latter two. Using ¢ to contract,

VaRs = VuRys +VyRyo =0

nvo

then,
VR

opuy

—VuRye —VyR;ye =0
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def.

note.

thm.

select one from g and v, and contract with sigma (¢?*) to obtain
~VizR) —V,R! 4+ V,R=0
notice that the above becomes
—2V R} + V,R =V, \R) — %VVR =0
Va(R) — %53}2) =0
Va(RM — %g’\“R) =0

1
VA(Rau = 500 R) =0

14.3 Einstein Curvature and the Einstein Field Equations

We newly define the Einstein curvature/tensor as

1
Guy = Rul/ — §g#yR

thus obtaining

which is covariantly conserved.

we use for the above,
gApvuRV)\pa = Vu(g/\pRu)\pa)

In Newtonian gravity,

V2® = 47Gp
The Einstein field equations are
G = 8nGTy,

The left is the Einstein curvature and the right-side is the energy-momentum tensor.
Note that
V.Gl =0

And GY is identically conserved/off-shell conserved and
V., =0

is on-shell conserved. The left-hand-side of the equation denotes information about
space-time, while the right-hand-side writes information about matter.
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rmk.

note.

rmk.

14.4 The Energy-momentum Tensor in Electrodynamics

The energy-momentum tensor in electrodynamics can be expressed as
" =FHPFY ! HYEFPOE,
- p Zg po

we note that
wo_
Tﬂ =0

and that the tensor is traceless.
VTR =V (FYFY — 1o FP Fy,)
=V, FUOEY 4 FUT, Y — (Y (FP )
=V, F"F) + F,, V' FY? — %V”FPUFPU
=V, F'"F] + %FW(V“F”’) — VPFVH — VY FHP)
=V, F*FY + gFﬂpV[PF/W]

now,
3
V. T" =V, F'FY + QFWV[PF“”}
=JPFY 40
=F!J°

with J# =0, V,TH = 0.

Note that we used

FuyV'F" = —F,, V' F"P = —F,,V/F""

next class, we derive that with the existence of a particle,
vV, = —F)J°
summing up with the expression above to become zero.

T =T 4+ T

total particle

and
VMT’“’ 0

total —
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15

Lecture 15

In this lecture, we finish off the discussion about the energy-momentum tensor in electro-

dynamics, calculating its divergence to derive energy and momentum conservation.

15.1 More on the Energy-momentum Tensor In Electrodynamics

recall.

rmk.

thm.

We recall a few things from last class. We first learned that the Einstein tensor was

given as
1
GV' = R/J'V — ig/ﬂ,R
forming the Einstein field equation,
G = 8nGTy,

The Einstein curvature satisfies the off-shell (Bianchi identity), irrelevant of coordi-
nate system
V,.G" =0

whereas the energy-stress tensor satisfies the on-shell identity
vV, T" =0

we also specified the stress energy tensor for electromagnetic fields where

1
Ty = FUPF) — 19" Fpo P

For the following equation to have same weights,
VuJW —=J" =0

we require a little change in our definition of current density, where you add the
square root of the metric in the denominator.

We now slightly state the Lagrangian formalism of general relativity. We integrate
(find the variation of)

/ V _gR + Ematter + m\/m d4$

The first term gives 167G, and the second /—gF),, F*".

def. The energy momentum tensor for a point particle is

© dah dat 6 (z — zn(Th))
ny — n n\'n
e Zn:/oo "dr dr S
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thm. We now calculate the divergence of this tensor. We obtain
vV, I (z) =0,T" + 10,77 + T, , + T}, TH

and

Zf) /m:c“x \/Zn Z/ml‘”azl’a )if;$n)) dr
= Z/mx%wﬁ [W + 0y (\/1_79)5(4)(56 — wn)} dr

:Z/m:n x“( 8/630%\(;?;30—1:”) _F§N(5(4)(jj—gxn)> ir

d/dté D (x — z,,
=3 /m—z; [AOTNT = 20) v g
- vV —g

and thus the divergence becomes

VT Z / 7)d/dto gix)— ZTn(T)) YT dr

using integration by parts,

_ Z / 5(4) — 2 (7)) + sza'gua‘cp(;(@ (x —an) dr
Ve

we arrive at

r om0 (T — )
;m/(m’n‘i_rupmﬁxZ)\/j‘g dr

which shall be equal the Lorentz force
v, 5(4) (JZ‘ — .’I}n) v
= ;/qu foT; dr = F)(z)J"(z)
as
D2zt
" Dr2

= m(&" + Th,iPi%) = qFli”
now,
V. Ty =— FyJ?
Vu(TE o+ Thy) =0

particle

now this encapsulates both energy and momentum conservation.
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note. for the metric tensor,

0=V,v=g=0/—9g-Tr.vV—9g
8#\/jg :Fﬁp
9 1 _ V=g _ _Fﬁu
"V=g (V=9? V-9
Ou(vV=9)" =nl3,(v=9)"

16 Lecture 16

By approximating the metric as a slight variation of a flat metric, we obtained a linearized
version of the Einstein field equations Then, we get a elementary introduction to gauge
symmetry.

16.1 The Linearized Einstein Field Equations

recall. The Einstein field equations were given by

1 8rG
e = 0w ="~

2 Ty

whereas for a point particle, the stress-energy tensor was given as

@) (p
™ =3 "m, / gy d (@ —2a(7)) o
b —g(z)

the (0,0) indice of the stress energy tensor is
TOO ~ mnCQt'Q

on the Earth’s surface,
G = Ny £ 1076

rmk. We use the perturbation method to obtain a linearised version of the Einstein field
equations. By linearization we mean that we express the metric as

v = v + My
also expressible as 6g,, = h,,,. What about the inverse of the metric?
g/,U/ ~ nﬂl/ _ nuphpgnUV — ,’,’[,LV + 69},”/ — ,r][l,V _ h/,“/

as we require that they multiply to give the Kronecker delta. It can also be described
by §(M~1) = —(M)~16M(M)~!. The Christoffel symbol, on the other hand, will be
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transformed accordingly

1
F;);V = 59/\p(8u9/w + OvGup — Opguv)

1
= 5(77)\'0 - h/\p)(auhtw + Ovhyp — Ophyu)

1
— 5(8uhﬁ + Ok — 0 )
Let’s try and do something similar for the Ricci tensor.

RS, =0, — 9,1, + T, 0, — T8I0,

1 1
=5 0u(Ou 15 + OANS — hyn) = S0,(9uh5 + DAYy — O Iyi)
1 K 1 K 1 K ]' LY
:iaua)\h,/ - iaua hl//\ - ana)\hu + §8M8 hu/\
1 1 1 1
Ry 5030t} — 50,0 hux — S0\ + 50,00

1 1
:8“80\}#; - §|:|h,/)\ - iaya)\hz

)
R ~n™ Ry, ~ —0h} + 0,0,h"
where [0 = 9,,0". Therefore the linearized Einstein field equation becomes

1
G'uy ~ R'uy — §nMVR

thm. Another way of expressing this statement is by contracting the field equations by g"”.

We obtain ) (2 D)
R— §DR = 5 R = 8rGT}/
assuming that D # 2,
167G
R= R
2—-D *

and

Guv i\
Ry = 87G(Tow + 5 _“DTA)

16.2 Gauge Symmetry

def. General covariance is a central principle of general relativity. It states that for an
arbitrary coordinate transformation is always possible (Gauge symmetry). Note that
coordinate trnasformations are also called diffeomorphisms.

note. We later learn that if we utilize the gauge choice, we can obtain
1
Ouhly — —0,h, =0

v 4 12
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simplifying the equation above as
1
R, = _§th
with 7}, = 0 in vacuum, the Einstein field equations predict gravitational waves by

Ohyw = 0

def. There are two perspectives regarding general coordinate transformations. The first is
changing the coordinate system,

aH — oM (x)

ox”
8# — 8;1' = 481?/“81/

O(x) —» d'(2)) = D(x)
which is a passive transformation. There are also active transformations, where
h — x#

Ou — O
O(z) = ' (x) = (2 (x))

17 Lecture 17

By looking into how transformations would transform under active transformations, we
arrive at the Lie derivative which is another covariant version of the derivative.

17.1 The Lie Derivative

recall. Last class, we mentioned the two sides of a diffeomorphism (a coordinate transfor-
mation that is both ways differentiable), passive and active. Consider the following
transformation x# — 2/#(z). A tensor would transform like the following

oz'* Oz° )

OzP Oz’ ° ()

ox |,
() = T = 55l

This would be called the passive aspect of a diffeomorphism. An active aspect of a
diffeomorphism would be when an actual event would change its coordinates. The
partial derivatives would remain the same, as we would be using the same coordinate
system. The tensor would transform as follows:

x' ., Oxt 0x'°

ox'
T () > T (@) = | S| s o TH)

ex. Consider the following scalar transformation, ¢(x) — ¢'(z) = ¢(z').
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def.

note.

thm.

Infinitesimal transformation where f! (z) = 2* and

& (x)

now consider the transformation

H o pp — b dr* 2y _ H 2
2= o = (@) = o 4 S0 + O(s7) = 2 + € (x) + 0(s7)

ot — "~ ot + M (x) = 2t + o

In this process, how much would the transformation themselves transform?

7t
6821/ zail/ (ah + &) =65 + 0,8"
oxH 0

~
~

(956/” ax/l/

(a" — gH(a)) = oy — D&

thus B
5( Ofvl’ ) = o
o(g2) -0
we used

7~z + €()
v~ —¢(x) =a’ — £(af)

(o) mE(z + &) = () + £0x¢

We conclude that in passive diffeomorphisms, d¢ = 0 and for active diffeomorphisms,
6¢ = £10ug(x), using ¢(z + &) = ¢(x) + £HOuo(x).
What is the variation of the determinant? Note that 6||M|| = ||M||Tr(M~15M).

oxt
a$lu 6

() o=

812 = 12 =2
or' "ox" oz
thus for a whole tensor, the passive variation becomes

5passiveT1£L = _wa)\gAT# + 8p£HTyp - ayng#
while the active variation becomes

5activeT# - ‘HUa)\f/\T# - angT’;O + aung;}f + gpapT#

The last term of the active variation is called the transport term while the second
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and third term together are called the angular term. The first term is simply the
weight term. We also denote this variation as the Lie derivative

LT
The derivative can be generalized like the following
P q
LETUUT = EPO,TLNT = 08Ty b + > 0, 6PTE N + wd P Tl Y
i=1 j=1
A surprising fact is that the derivative is covariant, and the above equates to
P q
= EPVTUNLE = Y VT YV EPTELH 4wV LT
i=1 j=1
If insert Christoffel symbols, they all cancel out. Observe that

p q
= first row + (gﬂrg;, _ rgipgp) T =3 <§pr”Vj . rgmgﬂ)T(ﬁy"
i=1 j=1

— w&T,TLL P 4wl E7TH
rmk. An important property of the Lie derivative is that it satisfies the Leibniz rule,
ﬁg(TS) = (ﬁgT)S + T(ﬁgS)
The Lagrangian of a particle is given as
L(F, N T Lol S R
( ;wag;w)—*z —g99 g o I/O'__Z
it is a scalar density, with

dactiveL = LeL = 0,(€"L)

prop. Consider the Lagrangian of a particle,

Eparticle = _m\/_gp,y(x(T)).%"'u‘(T).fl’(T)
the infinitesimal displacement becomes

ds* = g, (v)dx*dz”

18 Lecture 18

We investigate the Killing equation, which is an equation that seeks vectors such that a
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metric’s Lie derivative is zero. We discover these vectors to imply symmetries within space-

time.

18.1 The Killing Equation

recall.

def.

def.

rmk.

Last class we have learned the Lie derivative.

Legu =€ 0zgu + 04’ Gov + 0, Gup
=g + (Vi) gpw + (Vo) gpp
=0+ V(& 9p0) + V(&P gup)
=V + Vi€u = 2V (.6,

The note that the derivative is covariant.

We define the Killing equation as the following Lie derivative being vanishing.
0= ‘Cfgl“’ = vufu + vugu

The equation is what we need to solve for a given metric (background) to obtain its
symmetry. Then, each solution &* (which we call killing vectors) corresponds to a

certain symmetry.

Noether current (conserved) is defined as the contraction of the energy-momentum
tensor with the killing tensor.

Jr=TYE"
The following quantity has a tensor density of 0. Note that

V" =V, (T€)
:(VMT#)&/ + T‘LWV(;L&I) =0
Ou(v/—gJ") =0

We have used the Leibniz rule and the fact that T+ = T) As the divergence is
zero, the current is conserved. We thus identify that there is a corresponding current
that is conserved for each Killing vector.

If g, is independent of a certain coordinate, e.g. t = 20, €49, = §; is a killing vector,
and £* = (1,0,0,0) is a constant vector. Vertifying is trivial.

‘Cfgﬂl/ :épapg;w +0+0= atguu =0

We can see how energy is given as

E:/\/—gJO da3 :/\/—ng da3
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while the Noether charge is given as

Qc= [ vgrse aot

recall. For a flat metric, g, = 1,,. We now try to solve the Killing equation.

0 =0, + 0,&y
0 =0\0u&y + O\0LE,
=0)\0,& + 0,0\Eu
=07\0u&y — 006N
NOu& = — 000 = 0,0,
0,050y = — 0,0,61 = 0

thus, 0 = 0,0,&) and £ must be linear in 2. We have

¢ =Clia” + C*
£ =Ca” +C,
8)\§M :C,u)\

The Killing equation becomes Cj,x + Cy, = 0 and C) = Cp5 = —C),, and

g = Clia” + C¥

where CH = —C""* and C*" are constant. The prior are the Lorentz symmetries

while the latter are the translational symmetries, combining to become the Poincare

symmetries.

recall. We return to the linearized Einstein field equations. g,, ~ nu, + hyy. The inverse
metric satisfies g*” ~ n* — h*", where h*” = n#Pn"? h,,. Then the Christoffel symbol

became
F//)V :én)\p(auhpv + Ovhyp — Ophyun)
:é(auhﬁ +Ohy — P )
The curvature tensor approximately becomes
Ry, =00\ — 0,17
%%au(ayh*; b ONRE — 0%hy,) — %8,,(8Mh’§ OB — 0hy)

1 K 1 K 1 K 1 Y
’%iaua)\h,j — ia,ﬁ hy, — ana)\hu + 58,,6 hAﬂ
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Contracting the above,

1 1 1 1
v == h* — —=0Ohy, — =0, 0\hT + =0,0%h,
Ry 28)\8u v~ 5 A 28 Oz\h;, + 28 O"h

1 1 1
= §DhA,, — Zﬁy(@\hﬁ — 20%h,.)) — 18,\(8,/12 — 20%h,,)
lastly,
1 1 1 1 1
=— 0 — ~0Oh" + =0,0,h*™ — ~0Oh" + =8,0,h**
R 50— H+2aua I R+Qaﬂa
1 1

A K v
- — il:,hA - §|:|hﬂ "‘ aua,jh‘“

= — Oh} + 9,0, h™

thm. Consider the diffeomorphism

Guv = 09y = LeGuv
Guv = Guv + Egguu
Um + hMV — Nuv + h,uV + 55(77 + h)MV = Nuv + hlﬂ’ + EanV + ££hl“’

Assume that £ and h have the same orders of magnitude in order to ignore the last
term. We arrive at

by = hyuw + LN = hyw + 0u&u + 008

def. The harmonic gauge is given as
Ouhy, —20,hy, =0
The gauge freedom is given as

Py —rhyw + 0,80 + 0,6,
hy —hY, + 20,&"
Ozhyw —O0xhyu + 070LE, + 000LE,
Ok, =0\, + 0,0, +0¢ - -
by, — 20,hl; —0,hy — 20,k — 20¢,

19 Lecture 19

recall. Last class, we have learnt the linearised Einstein equations by putting g ~ n+ h with
Ry, = —0hy, /2. We considered the following diffeomorphism

5h/u/ = Eghwf = ufu + 81/£u
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resulting in
Ao Lo
(5(8)\}1“ - iaMhA) - _2D§,U,

we have the following transformation
By = b = By + O + Ok

but
1 1
8)\hﬁe“)‘ -3 Buhﬁe‘ A== (%\hild)‘ 3 8ﬂh§\1d)‘ — D{M

recall. We know the following facts from electrodynamics. If an equation is given like the
following,
(a0, 7) = dmp(a”, 7)

the solution is given as

0 _|=_
w($0’£) :/p(x ’33 T D d$/3

77

We previously saw that the following is equivalent to the field equations

1
R, — -9 R =87GT,,

2
R
(1- )R =87 GT}
167G
——7
R=3=p1
Ohy ~ —167G(T) + 2’7_‘“’DT§)

we know that h,,, is of the same order as 87GT),, as it is the variation from flat space.
The above equation’s solution is given as

1
0 = T = 577‘“’TAA 3
huw (27, %) = 4G/ dz

|7 — &

oy =20 —|T—7'|
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vertifying that it satisfies the gauge, we find
htt =4G / ret’ dq:3
]:U — 7|

1
Ok, — 50n hy =0 (h), — 553}#)

1
T — S0.T) — 5A( P) =T
TAac—x—x 8T0x0_f_f/’f/ 0{Ti330—j’—_”,f’
aA/ (27 — | I)dxgz/ou( | L) 0T~ | ,2")

dz®
|Z — 2| |Z — 2| |7 — 2|

+ (terms that vanish at infinity)

20 Lecture 20

recall. Last class, we linearized the field equations into

167G
Ohya = ——5— (T + 277_“”D

13)

and solved for the variation, obtaining

1
Ty (2 = |Z = &, &) = S T3 (2 — | — &, &)
h‘u,y(l‘ T —4G/ 2 d3 /
|7 — 2|

under the gauge
205k, = Ouh)

Lets try and repeat the calculations. The Christoffel symbols became

1 1
Ffw = §9Ap(3ugpv + Ovgpu — Opguv) & i(auhi\ + 8,,hf; - 6’\h,w)
Given the geodesic equation,
S\ A e
0=3a"+Ty,,a"z"
we approximate it using the Christoffel symbol above to obtain

1
0= &+ (9,h) — 58%“1,)55“:&”

rearranging, .
i = 5(aAhW — 20, h)) it
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thm.

For a non-relativistic/slow moving particle, we know that the front term is dominant,
ie., i = (20, %) ~ (¢, ¥) =~ (¢,0), |] << c. Then, we get

2 2 8
ﬁx%ﬁ%m—g%%z%ﬁ%m—wmé

ot
and )
AL S M h
x 5 00
implying
A
= —
5 V0o

From the above, we try to find hgg, supposedly

3
hoo = 4G [T+ 2 T d3x

c? |7 — 2|
using

T =T5 + T} = —Too + T}

(Too + Yooy Tia) (F)
2

1 1 .
Too — 57700T,<‘ =Too + 5(—T00 +1T}) =
Finally,

3
A~ GV/ —TOO + Ei:l Tii a3z’

|7 — 7|

In the Newtonian limit, with Newtonian gravity, we would expect
mi = —VV

and

m 77

thus we find the mass density to be

3
p(E) =Too + > _ T
i=1

How does light behave under such pertubations of the metric? We know that light
behaves like the following
&Y (Nuw + b)) =0

with
0 light
#"2"g,,, = { —1 massive particle

1 tachyon

— 57 —



let #* = (v,v,0,0) which would describe light moving along the z-direction or gen-
erally ## = (v,vn), for a unit vector n - n = 1. We state without derivation that
when we plug this into the linearized field equations, we obtain the following met-
ric. Consider the solar system test in a sphercal symmetric case. PPN stands for
parametrised-post-newtonian analysis.

d82 = <— 1+ 2GTM —|—25ppN<GM)2 + - - -)dt2 + (1 —}—27ppNGTM + - - )df dx

According to experiment, we know that Sppny ~ 1 and vyppn = 1, which is exactly
satisfied by the Einstein field equations with large precision.

rmk. Finding the average of the trace of the pertubtation,

1. 3.,
“h— T _ 2T
3hl 3(l 2)\)
1 1,
== (Tyo — =T}

we know that if T/ ~ 0 then hgy ~ hii and that yppn ~ 1.

21 Lecture 21

recall. We calculate the Laplacian of the potential function like the following

vz/ﬂ(x0—|$—33/’a$/) 34

@—WI

@—fl

/
- 1
:13—:13] |z — x|
V(0 — o — 2/ Op(® — & — a'l,a))  (@—a)p o,
=V - — d°x
|z — | |z — '3
:_v/ [le’ —le 2w , ool —lo— ol s,
|z — | |z — |
1
5 [ EED apta? — la = )+ pla” — - )V

:—47Tp+80/|$_w,|d31‘/

Thus, we can conclude

pa’ — |z —a'|.2) 5 ,
D/ z— | d’z’ = —4mp

thm. Today, we're going to obtain a spherically symmetric vaccum solution to the gravi-
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note.

thm.

tational field equations.
G = 8nG1T),,

As we learnt the Lie derivative, we know that such a solution should satisfy
Lr,9uw =0

for a € 1,2,3. L1, Lo, Ly are nothing other than angular momenta, given by

0

— — _ 79
L3 - % — Lg@u — L38¢
and
Lr, Ty =0
when you impose all the following
Lr,9uw =0
EnglW =0
'Cng;w =0

Evguv = 'U)\g,uu + a,uv)\g)\zx + 81/0/\9;0\

You obtain the following form of proper displacement anzatz
ds* = A(t,r)dt* + 2B(t,r)dtdr + C(t,r)dr* + D(t,7)(df? + sin® §d¢?)
We can reform the anzatz into

ds® =A(t,r)[dt + da(t,r))* + B(t,7)dr? + D(t,r)(d6* + sin® 0d¢?)
=A[d(t +a))? + - -
=Adt?,, + Bdr? + D(df? + sin 0d¢?)

new
where tpew =t + a(t,r). Expanding,

=A(dt + dtdra + dro.a)? + Bdr?
=A((1 4 0y)dt + dradr)? + Bdr?
=A(1 4 0sa)?dt® + 2A(1 + D), adtdr + [A(0ra) + Bldr?

this implies that

A1+ da)?
A(1 + 84) 0 x
A(dra)? + 3

A
B
C
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Logic here is faulty, but we want to conclude that we don’t need a cross term. We can
also go into coordinate where D = r2__ . In this new coordinate system, the proper
distance becomes

ds* = A(t,r)dt? + B(t,r)dr? + r2(d6?* + sin? 0dp?)
another popular choice is
ds® = CO(t,7)dt* + B(t,7)[di* 4+ #*(d6? + sin? 0d¢?)]

the terms in the square brackets interestingly are spatically flat, and we call them
isotropic coordinates in systems with spherical symmetry.
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