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1 Lecture 1

In this lecture, we start with an introduction about what general relativity is introducing two

central equations used in the theory. We then move onto special relativity, deducing from

Maxwell’s equations that, according to his theory of electromagnetism, the speed of light is

constant. We finish by deriving a particular transformation that can be derived from this

fact (a special case of a Lorentz transformation), where we convert experienced times be-

tween an observer that is moving relative to another observer at rest.

1.1 Introduction

rmk. This course first begins with an introduction to special relativity which is the no

gravity limit of general relativity. Then, we move on to the mathematics behind

tensors and get a grasp of differential geometry, which is the language of the subject

we’re studying. Next, we learn the Einstein field equations, which relates information

of curvature to the energy-momentum tensor.

Gµν︸︷︷︸
information on curvature

= 8πG Tµν︸︷︷︸
energy-momentum tensor

Finally, we finish the course by looking at a few applications including (1) Newtonian

gravity (which should be a limiting case of general relativity), (2) Schwarzschild

geometry which can be seen as an exact solution of the Einstein field equations with

spherical symmetry, (3) black-holes, (4) cosmology, and (5) gravitational waves.

rmk. The totality of general relativity can be summed up into the following two phrases by

the physicist John Wheeler: ”matter tells spacetime how to curve” and ”spacetime

tells matter/particulars how to move”. The first part can be seen as a description of

the Einstein field equations, whereas the second part can be seen as a description of

the geodesic equation that we’ll learn later on.

ẍλ + γλµν ẋ
µẋν = 0
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1.2 The Speed of Light & Lorentz Transformations

def. The Maxwell equations in vacuum be summerised like the following

∇ ·E = 0

∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0ε0
∂E

∂t

thm. We can easily prove, through evaluating the curl of the curl of the electric field and

the magnetic field, that the magnetic field and electric field both satisfy the same

partial differential equations which is also a wave equation whose solution describe

waves that travel in the speed of light.

lem. The curl of the curl of a vector field in R3 (∇× (∇× F)) can be calculated like the

following.

∇× (∇× F) = εijkei∂j(∇× F)k

= εijkei∂j(εklm∂lFm)

= εijkεklmei∂j∂lFm

= (δilδjm − δimδjl)ei∂j∂lFm

= ei∂i∂jFj − ei∂l∂lFi

= ∇(∇ · F)−∇2F

Few notes on the notation used. Note that all lower indices are summed over (alike

the Einstein summation convention) and that we used the notation ∇2 to denote the

Laplacian of F.

pf.

∇× (∇×E) = ∇×
(
−∂B
∂t

)
= − ∂

∂t
(∇×B)

= −µ0ε0
∂2E

∂t2

Combining this result with the lemma above and Gauss’s law in vaccum, we obtain(
−µ0ε0

∂2

∂t2
+∇2

)
E = 0
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or, equivalently, using the wave operator/d’Alembertian □,

□E = 0

For the magnetic field,

∇× (∇×B) = ∇×
(
µ0ε0

∂E

∂t

)
= µ0ε0

∂

∂t
(∇×E)

= −µ0ε0
∂2B

∂t2

combining this result with the lemma above and the curl of the magnetic field, we

finally obtain

□B = 0

In vector notation, (
− ∂2

c2∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)(
E

B

)
= 0

cor. This second-order partial differential equation in one-dimensional case can be largely

simplified through a light-cone coordinate system, which is described like the following{
x+ = x+ ct

x− = x− ct

Then, the differential operators for time and the coordinate x can be rewritten in the

new coordinate system via the chain rule as
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
∂

∂t
=
∂x+

∂t

∂

∂x+
+
∂x−

∂t

∂

∂x−
= c(∂+ − ∂−)

∂

∂x
=
∂x+

∂x
∂+ +

∂x−

∂x
∂− = ∂+ + ∂−

In this new coordinate system, the equation above becomes

0 = ∂+∂−Φ

which can be solved as

∂−Φ = f(x−)

Φ =

ˆ
dx−f(x−) + c(x+)

Φ = fL(x+ ct) + fR(x− ct)

In R3, the equation becomes

0 =

(
− ∂2

c2∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ

whose general solution is

Φ =

ˆ
Ck exp{i(c|k|t+ k · x)}+Dk exp{i(−c|k|t+ k · x)} dk3

Notice how the solution wave has a constant speed of c, which is the pinpoint of

Einstein’s theory of special relativity.

thm. We use a imaginary setup involving a train to derive the Lorentz transformation in

a special case where one observer is on the train (S) and one is at rest (S′). As the

speed of light must be equal for both observers,

c2∆t′2 = 4L2 + v2∆t′2

(c2 − v2)∆t′2 = 4L2

∆t′ =
2L√
c2 − v2

=
c∆t

c2 − v2
=

∆t√
1− v2/c2

On this note, an event can be considered a point within spacetime indepedent of the

coordinate system used, and thus an event on the train can be denoted as:

event ≡ (ct, x, y, z)observer

≡ (ct′, vt′ + x0, y0, z0)observer′
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2 Lecture 2

In this section, we generalize the notion of a Lorentz transformations and learn about the

space-time metric, a tool that can be used to express quantities that are invariant through

Lorentz transformations.

2.1 General Lorentz Transformations

thm. To obtain general Lorentz transformations, consider the example of a observer on

a train that travels along the x-axis being shot by a beam of light at B from an

arbitrary point A. We first express the two events A and B in the coordinates of an

observer outside and an observer inside.
A : (t, x, y)i = (t′, x′, y′)o

B : (
√

1− (v/c)2t′′, 0, 0)i = (t′′, vt′′, 0)o

The distance difference between the events can be written by the following two ways

as

c2(t′′ − t′)2 = (x′ − vt′′)2 + y2.

Solving this quadratic equation with respect to t′′,

t′′ =
t′ − vx′/c2 ± 1/c

√
(x′ − vt) + (1− v2/c2)y′2

1− v2/c2

we choose the positive sign for the square-root term as we want the final time to be

later than the initial time for the observer outside.

From this, we can also construct the same equivalence in terms of the observer inside,

giving

c2(
√

1− v2/c2t′′ − t)2 = x2 + y2

Substituting for t′′, and imposing that the equality holds for arbitrary y, we conclude

that 
t =

t′ − vx′/c2√
1− v2/c2

x =
x′ − vt′√
1− v2/c2

Where the primed coordinates describe the coordinates for the observer outside and

the unprimed coordinates describe the coordinates for the observer inside.
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This general form of the Lorentz transform can be written in an alternate notation

where xµ = (x0 = ct, x, y, z), 
x0 = γ(x′0 − βx′1)

x1 = γ(x′1 − vx′0)

x2 = x′2

x3 = x′3

In the case for a transformation from the moving frame to the rest frame, there would

be a sign change, 
x′0 = γ(x0 + βx1) + C0

x′1 = γ(x1 + βx0) + C1

x′2 = x2 + C2

x′3 = x3 + C3

These transformations are called Lorentz transformations. If you would allow constant

translations (like the second set of equations above), all the transformations would

amalgamate to be a larger set, called Poincaré transformations. Considering these

transformations in the light-cone coordinate system that we considered above, we

obtain 
x′+ = γ(x+ + βx+) = γ(1 + β)x+ =

√
1 + β

1− β
x+

x′− = γ(x− − βx−) = γ(1− β)x−
√

1− β

1 + β
x−

HW. Note that the following expression of distance is an invariant quantity:

(∆x0)2 −∆x⃗ · x⃗ = (∆x′0)2 −∆x⃗′ · x⃗′

as

RHS = γ2(∆x0 + β∆x1)2 − γ2(∆x1 + β∆x0)2

− (∆x2)2 − (∆x3)2

= (∆x0)2(γ2 − γ2β2) + (∆x1)2(γ2β2 − γ2)

− (∆x2)2 − (∆x3)2

=(∆x0)2 − (∆x1)2 − (∆x2)2 − (∆x3)2

=LHS

def. At this point, we introduce the spacetime metric ηµν = diag(−1, 1, 1, 1). Using this

metric, also called the Minkowskian, we can express this invariant quantity (∆s),
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known as the proper distance, as

∆s2 = ηµν∆x
µ∆xν

As infinitesimals,

ds2 = ηµνdx
µdxν

def. Using this definition, we can can state that Lorentz transformations are the group of

linear maps that leave the proper distance invariant.

∆s′2 = ηµν∆x
′µ∆x′ν = ηµνL

µ
ρL

ν
σ∆x

ρ∆xσ =

∆s2 = ηρσ∆x
ρ∆xσ.

Notice that for the proper distance to be invariant, we require

ηρσ = ηµνL
µ
ρL

ν
σ

In matrix notation, the above identity can be written as

η = LT ηL

To emphasize again, any Lorentz transformation would satisfy the matrix identity

above. It is good to note that Lorentz transformations can be taken as the set of all

boosts and spacial rotations.

2.2 Representation theory of the Lorentz Group

rmk. A simple corollary of the identity above is that the set containing all transformations

would be closed under multiplication and inverses as,

(L1L2)
T η(L1L2) = η

(L−1)T ηL−1 = η

Here, we recall the definition of a group and a lie group.

recall. A group is a set equiped with a binary operation that is associative, contains an

identity element within the group, and has an inverse element for every element such

that it multiplies to give the identity element above. Some examples of a groups are

the orthogonal groups O(n) where n denotes the order of the group. They are the

collection of all n× n matrices such their matrix multiplication with their transpose

gives the identity matrix.

O(n) = {A ∈ Mn×n(R) | ATA = In}

def. The subgroup of the orthogonal group whose elements additionally have a unit de-
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terminant is called the special orthogonal group.

SO(n) = {A ∈ O(n) | det(A) = 1}

def. The group of all invertible (p+ q)× (p+ q) matrices satisfying

AT ηA

for η = diag(−1, ...− 1︸ ︷︷ ︸
p−times

, 1, ...1︸ ︷︷ ︸
q−times

) is called the indefinite-orthogonal group. The sub-

group, called the special indefinite-orthogonal group is, analogous to the case above,

members of O(p, q) with a unit determinant. In this way, the Lorentz group can be

reframed as the special indefinite-orthogonal group SO(1, 3).

def. A lie group is a group that is also a differentiable manifold such that the group

multiplication map and the inverse map are differentiable.

3 Lecture 3

In this lecture we expand the discussion of groups that we had a prelude on in the last

lecture, and future see the similarity between the Lorentz group that satisfies a certain

identity and the rotational group that satisfies another.

3.1 The Lie Algebra of the Matrix Lorentz Group

recall. We know that the two-dimensional Lorentz transformation for time and space is given

as

t′ = γ(t+ βx)

x′ = γ(x+ βt)

In matrix form, (
t′

x′

)
=

(
γ γβ

γβ γ

)
=

(
t

x

)

Here gamma is given as γ = 1/
√

1− β2, where β = v/c, satisfies −1 < β < 1, and

also is a continuous parameter for the specific transformation.

cor. The fact that γ2 − (γβ)2 = 1 allows us to take

γ = coshϕ

γβ = sinhϕ

β = tanhϕ
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Letting us to write the transformation via hyperbolic functions,

L(ϕ) =

(
coshϕ sinhϕ

sinhϕ coshϕ

)

Note that the matrix satisfies

LtηL = η =

(
−1 0

0 1

)

cor. The derivative of the matrix is–

dL(ϕ)

dϕ
=

(
sinhϕ coshϕ

coshϕ sinhϕ

)
=

(
0 1

1 0

)
L(ϕ)

Considering the higher derivatives,

dnL

dϕ
=

(
0 1

1 0

)n

L(ϕ)

In this manner, we can obtain an exponential expansion of the Lorentz transformation

like the following (also note that L(ϕ = 0) = I)

L(ϕ) =
∞∑
n=0

ϕn

n!

dnL

dϕn

∣∣∣
ϕ=0

=
∞∑
n=0

1

n!

(
0 ϕ

ϕ 0

)n

= exp{ϕ

(
0 1

1 0

)
}

≈ I + ϕ

(
0 1

1 0

)

Notice that we can thus approximate(
I + ϕ

(
0 1

1 0

))T

η

(
I + ϕ

(
0 1

1 0

))
≈ η

thm. From above, we can deduce that η satisfies(
0 1

1 0

)T

η + η

(
0 1

1 0

)
= 0

we denote the group of all matrices η that satisfy this as SO(1, 1).
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rmk. Notice that the Pauli matrices satisfy this, where

σxσz + σzσx = 0

thm. A great analogous situation is rotation on a plane, where(
x′

y′

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
= exp{

(
0 −θ
θ 0

)
}

(
x

y

)

and where the matrix I satisfies(
0 1

−1 0

)T

I + I

(
0 1

−1 0

)
= 0

We denote all the matrices that satisfy this equation as SO(2).

thm. Like the examples above, the Lorentz transformations can be seen as a SO(1, 3),

denote-able in a general form as L = eM ≈ I +M . It should satisfy

LT ηL = η = diag(−1, 1, 1, 1)

being a Lorentz transformation the following approximation can be made.

(I +M)tη(I +M) ≈ η

in an expanded form, we finally arrive at the key identity

M tη + ηM = 0

prop. We can use the identity we have derived above to give an explicit form for the Lorentz

transformation’s exponential M .

(ηM)t = −ηM

and from the above, 
0 ϕx ϕy ϕz
ϕx 0 θz −θy
ϕy −θz 0 θx
ϕz θy −θx 0


We state without explaination that the three degrees of freedom for phi represents

the three boosts and that the three degrees of freedom for theta represents the spatial

rotations.

rmk. The submatrix of the matrix above is simply the rotation matrix, whose eigenvector
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for the eigenvalue of 0 is the principle axis constructable as follows.

Rij =

 0 θz −θy
−θz 0 θx
θy −θx 0


ij

=
3∑

k=1

ϵijkθk

Now, we find the eigenvector of the matrix above which shall satisfy

3∑
j=0

Rijθj = 0

this vector would be exactly the principle axis, expressible as

θ = θ
θ

θ
= θ θ̂

4 Lecture 4

In this lecture, we consider the exponential map which parametrizes a transformation from

one reference frame to another. Then, we define and investigate the transformation proper-

ties of various vectors in space-time, namely proper distance, proper time, and four velocity.

4.1 The Exponential Map

def. An exponential map is parametrized map from one reference frame to another. That

is, x′µ → x′µ(x) = fµ(λ = 1, x), and fµ(0, x) = xµ. We now calculate the first
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n-derivatives of this function.

d

dλ
fµ(λ, x) = V µ(f(λ, x)) = V ρ(f)

∂

∂fρ
fµ

d2

dλ2
fµ(λ, x) =

d

dλ
V µ(f(λ, x)) =

∂V µ

∂fν
dfν

dλ

= V ν ∂V
µ(f)

∂fν

d3

dλ3
fµ(λ, x) =

d

dλ

(
V ν(f)

∂V µ(f)

∂fν

)

=
dfρ

dλ

∂

∂fρ

(
V ν(f)

∂

∂fν
V µ(f)

)

= V ρ(f)
∂

∂fρ

(
V ν(f)

∂

∂fν
V ν(f)

)

=
(
V ρ(f)

∂

∂fρ

)2
V µ(f)

dn

dλn
fµ(λ, x) =

(
V ρ(f)

∂

∂fρ

)n−1
V µ(f)

We can thus find the function above, using Taylor’s expansion, to be

fµ(λ, x) =
∞∑
n=0

λn

n!

(dnfµ(λ, x)
dλn

|λ=0

)
=

∞∑
n=0

λn

n!

((
V ρ(f)

∂

∂fρ

)n−1
V ν(f)

)
|λ=0

=

∞∑
n=0

λn

n!

((
V ρ(x)

∂

∂xρ

)n−1
V ν(x)

)
=

∞∑
n=0

λn

n!

(
V ρ(x)

∂

∂xρ

)n
xµ = exp{λV ρ(x)∂ρ}xµ

which is approximately xµ + λV µ(x) + · · ·. This tells us that V µ(x) = δxµ and that

the first derivative gives us information about infinitesimal difference as xµ → x′µ(x).
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4.2 Four Vectors and their Transformations

def. We now define proper distance, which can be thought of as the invariant version of

distance in space time.

ds2 = −c2dt2 + dx · dx

def. Proper time, in the other hand, is the above divided by c2.

dτ2 = dt2 − dx · dx/c2

= dt′2 − dx′ · dx′/c2

Using this fact that there is this version of invariant time, we define covariant velocity.

def. Covariant velocity (four velocity)

V µ =
dxµ

dτ

It is worth noting how this covariant form of velocity transforms.

V ′µ =
dx′µ

dτ ′
= Lµ

ν

dxν

dτ
= Lµ

νV
ν

where Lµ
ν = dx′µ/dxν . Note that this quantity has the same transformation properties

as the infinitesimal displacement vector, where

dx′µ =
∂x′µ

∂xν
dxν

This displacement vector transformed covariantly, thus considered a vector in space-

time. As such, it can also be called a (0, 1)-tensor. Meanwhile, it is to be noted that

partial derivatives transform oppositely (contravariantly),

∂′µ =
∂xν

∂x′ν
∂ν

Such tensors are also called (1, 0)-tensors.

rmk. Noting that a vector can be raised or lowered an index using the space-time metric,

we discover that lowered indices transform oppositely from when it is raised.

V ′
µ = ηµνV

′µ = ηµνL
µ
ρV

ρ

= [(LT )−1η]µρV
ρ = [(LT )−1]σµησρV

ρ

= [(LT )−1]σµVσ

– 13 –



In other notation,

∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ = ηµν

V ′
µ = ηµνV

′ν = ηµν
∂x′ν

∂xρ
V ρ

=
∂xρ

∂x′µ
ηρσV

ρ =
∂xρ

∂x′µ
Vρ

rmk. At this point, we remark that the inverse of tensors have lowered and raised indices,

and that transposes simply change the order in which the indices take place.

5 Lecture 5

We now generalize the investigations of particular contravariant (sets of numbers that trans-

form like the proper distance vector) and covariant (sets of numbers that transform inversely

to the proper distance vector) vectors. After observing the transformation of a lot more vec-

tors in space-time, we reconstruct the theory of electromagnetism in terms of tensors and

motivate our reasoning for using tensors to describe physical phenomena: we want a frame-

work invariant of reference frame (i.e., we want 0 to remain 0). We finish off by noting

that gravitational potential only exist in rest or uniformly moving frames.

5.1 Contravariant and Covariant Vectors and their Transformations

recall. Consider the following coordinate transformation xµ → x′µ(x). We can consider the

transformation for an infinitesimal

dxµ → dx′µ = dxν
∂x′µ

∂xν

through the direct application of the chain rule, we identify that the vector transforms

covariantly. The inverse relation works for the partial, where

∂µ → ∂′µ =
∂xν

∂x′µ
∂v

we also consider the case for the Kronecker delta, and

δνµ → ∂xρ

∂x′µ
∂x′ν

∂xσ
δσρ = δνµ

lastly, for the case of the space-time metric,

ηµν → ∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ = ηµν
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Consider how Poincare transformation works on lowered and raised indices.

dxµ = ηµνdx
ν → dx′µ =

∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ

∂x′ν

∂xλ
dxλ

=
∂xρ

∂x′µ
ηρσδ

σ
λdx

λ =
∂xρ

∂x′µ
dxρ

for the partial,

∂µ = ηµν∂ν → ∂′µ =
∂x′µ
∂xρ

∂x′ν

∂xσ
ηρσ

∂xλ

∂x′ν
∂λ

=
∂x′µ

∂xρ
ηρσδλσ∂λ =

∂x′µ

∂xρ
ηρλ∂λ =

∂x′µ

∂xρ
∂ρ

for the proper time, however,

dτ → dτ ′ = dτ

thus motivating its use in the covariant form of velocity.

def. We define four velocity as the derivative of proper distance against proper time, and

we can observe that it transforms contravariantly.

dxµ

dτ
→ dx′µ

dτ ′
=
∂x′µ

∂xν
dxν

dτ

cor. A great property of the four-velocity is that it satisfies the following identity. Which

comes directly from the definition of proper distance by dividing both sides by dτ .

dxµ

dτ

dxν

dτ
ηµν = −c2

This fact is obvious once you consider xµ and xν to move along the particle whose

proper time is measured. The time derivatives of the spacial components would be

zero and the result is trivially −c2.

def. Four-momentum is simply four velocity times mass.

pµ = m
dxµ
dτ

cor. Contracting four momentum using the spacetime metric, we obtain the following
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familiar expression for energy.

pµpνη
µν = p2 = −m2c2

(p0)
2 − p · p = m2c2

p0 =
√
m2c2 + p · p

p0 = mc
√

1 + p · p/m2c2

≈ mc+ p · p/2mc+ · · ·
E ≈ mc2 + p · p/2m+ · · ·

5.2 The Formulation of Electromagnetism using Tensors

rmk. The reason why we write the four-momentum with lowered indices is because it

naturally arises in Lagrangian mechanics.

pµ =
∂L

∂0∂xµ

def. The reason why we want to write physics in a covariant manner is because equa-

tions must be tensorial for things to be conserved. To display this, we investigate

electromagnetism. Lorentz force in non-relativistic cases can be written as

ma = qv ×B + qE

In relativistic cases,

m
d2xµ

dτ2
= qFµ

ν

dxν

dτ

where Fµν = ∂µAν − ∂νAµ. Note that it is empty in its diagonal (Fµµ = 0) and is

antisymmetric (Fµν = −Fνµ). In expanded form,

m
d2x1

dτ2
= qF 1

0

dx0

dτ
+ qF 1

2

dx2

dτ
+ qF 1

3

dx3

dτ

m
d2x1

dτ2
= qF 2

0

dx0

dτ
+ qF 2

2

dx2

dτ
+ qF 2

3

dx3

dτ

m
d2x1

dτ2
= qF 2

0

dx0

dτ
+ qF 2

2

dx2

dτ
+ qF 2

3

dx3

dτ

m
d2x1

dτ2
= qF 3

0

dx0

dτ
+ qF 3

2

dx2

dτ
+ qF 3

3

dx3

dτ
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where

Fµν =

Ex/c Bz By Bx

Ey/c Bz By Bx

Ez/c Bz By Bx


prop. We derive that the electromagnetic potential transforms convariantly and that the

tensor F transforms covariantly twice.

Aµ(x) → A′
µ(x

′) =
∂xλ

∂x′µ
Aλ(x)

Fµν(x) → F ′
µν(x

′) = ∂′µA
′
ν − ∂′νA

′
µ

=
∂xρ

∂x′µ
∂ρ

( ∂xσ
∂x′ν

Aσ

)
− (µ↔ ν)

=
∂2xσ

∂x′µ∂x′ν
Aσ +

∂xρ

∂x′µ
∂xσ

∂x′ν
∂ρAσ − (µ↔ ν)

=
∂xρ

∂x′µ
∂xσ

∂x′ν
∂ρAσ − ∂xσ

∂x′ν
∂xρ

∂x′µ
∂σAρ

=
∂xρ

∂x′µ
∂xσ

∂x′ν
Fρσ

HW. We can do something similar with the F tensor with one upper and one lower index,

and it multiplied with four velocity.

Fµ
ν → F ′µ

ν = ηµκF ′
κν

=
∂x′µ

∂xα
ηαβ

∂x′κ

∂xβ
∂xρ

∂x′κ
∂xσ

∂x′ν
Fρσ

=
∂x′µ

∂xα
ηαβ

∂xσ

∂x′ν
Fα
σ

=
∂x′µ

∂xα
∂xσ

∂x′ν
Fα
σ

HW. A simple corollary would be transformation for the F tensor times the four velocity

Fµ
ν

dxν

dτ
→ F ′µ

ν

dx′ν

dτ
=
∂x′µ

∂λ
F λ
ν

dxν

dτ

thm. Finally, we see how the Lorentz force transforms between reference frames.

m
d2xµ

dτ2
− qFµ

ν

dxν

dτ
= 0

m
d2x′µ

dτ
− qF ′µ

ν

dx′ν

dτ
=
dx′µ

dxλ

(
m
d2xλ

dτ2
− qF λ

ν

dxν

dτ

)
= 0

The highlight is that zero-force is remained that way in both reference frames.
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cor. A simple corollary from above is that four-acceleration times four-velocity is zero.

Observe that,

dxµ
dτ

d2xν

dτ2
=
dxµ
dτ

qFµ
ν

dxν

dτ
= qFµν

dxµ

dτ

dxν

dτ
= 0

as
dxµ

dτ

dxν

dτ
ηµν = −c2

cor. A following corollary is that in this framework, gravitational potential doesn’t exist.

We first define gravitational potential as

m
d2xµ

dτ2
= −∂µV

However, suggesting that such potential exists would lead us to a non-vanishing four-

acceleration times four-velocity.

m
d2xµ

dτ2
dxν

dτ
ηµν = −∂µV dxµ

dτ

= −dx
µ

dτ
∂µV

= − d

dτ
V (x(τ))

As the four velocity times four acceleration is always zero, either the derivative of

the potential (which is acceleration) is zero or the derivative of the proper distance

(which is velocity) is zero which implies that the reference frame we are referring to

is either in rest or moving in constant speed.

6 Lecture 6

In this lecture, we rewrite Maxwell’s equations in terms of tensors. After we do so, we

prove Poincare’s lemma for (0, 2)-tensors by stating an explicit form of the potential func-

tion, therefore proving that electromagnetic force has a potential function in all reference

frames. We shortly deviate and prove Poincare’s lemma for vector functions (which are

(1, 0)-tensors). We finish off by suggesting an alternate form of current density and thereof

showing that the derivative current density is zero, ultimately proving that current density

is a conserved throughout space-time.

6.1 Maxwell’s Equations in Terms of Tensors

def. Using the covariant framework that we have created, we can rewrite Maxwell’s equa-

tions in terms of tensors as{
∂µF

µν = Jν

∂λFµν + ∂µFνλ + ∂νFλµ = 0
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Here, we note that Fµν = ∂µAν − ∂νAµ and that Jν = (ρ/c,J).

6.2 Poincare’s Lemma

thm. Poincare’s lemma states that when a force is conservative, there is a potential function

for that force.

pf. We can prove this by explicitly showing that such a function exits. We first claim

that it has the following form.

Aν(x) =

ˆ 1

0
sFµν(xs)

dxµs
ds

ds

Here, we use the notation xs = x(s). Note that the variable x is parametrized as a

line segment in terms of s. 
xµ(s) = (xµ − xµ0 )s+ xµ0

xµ(s = 1) = xµ

xµ(s = 0) = xµ0

To verify that this is indeed the potential function we ought to find, we derivate,

obtaining

∂µAν(x)− ∂νAµ(x) = ∂µ

[ ˆ 1

0
sFρν(xs)

dxρs
ds

ds
]
− (µ↔ ν)

=

ˆ 1

0
s2

∂

∂xµs
Fρν(xs)

dxρ

ds
+ sFρν(xs)δ

ρ
µ − s2

∂

∂xνs
Fρµ(xs)

dxρ

ds

− sFρµ(xs)δ
ρ
ν ds

=

ˆ 1

0
s2

∂

∂xµs
Fρν

dxρ

ds
+ sFµρ(xs)δ

ρ
µ + s2

∂

∂xνs
Fµρ(xs)

dxρ

ds

+ sFµρ(xs)δ
ρ
ν ds

=

ˆ 1

0
s2
dxρ

ds

[ ∂

∂xµs
Fρν(xs) +

∂

∂xνs
Fµρ(xs)

]
+ 2sFµν(xs) ds

=

ˆ 1

0
−s2∂x

ρ

∂s

∂

∂xρs
Fνµ + 2sFµν(xs) ds

=

ˆ 1

0

∂

∂s

[
s2Fµν

]
ds

=Fµν

rmk. In the constructed potential function above, we can add any function whose partial

vanishes (such as ∂µΛ for any function Λ as ∂µ∂νA− ∂ν∂µA = 0). This is symmetry

between fields are called Gauge symmetry.

pf. We can do something similar for vector functions where we claim that the potential
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has the following form.

V =

ˆ 1

0

dxs
ds

f(xs) ds

then,

∂iV = ∂i

ˆ 1

0

dxjs
ds

fj(xs) ds

=

ˆ 1

0
fi(xs) + s

dxjs
ds

∂fi(xs)

∂xis
ds

=

ˆ 1

0
fi(xs) + s

dxjs
ds

∂fi(xs)

∂xjs
ds

=

ˆ 1

0
fi(xs) + s

dfi(xs)

ds
ds

=

ˆ 1

0

d

ds

[
sfi(xs)

]
ds

= fi(x)

6.3 Current Density as a Tensor

def. Consider a group of charged particles whose trajectories are parametrized by proper

time, which we also will refer to as the worldline parameter (the trajectory is a

function of proper time, xµn(τ)). The current density vector can then be expressed as

Jµ(x) =
∑
n

ˆ
qn
dxµn(τ)

dτ
δ(4)(x− xn(τ)) dτ

here, δ(4)(x−x(τ)) = δ(x0−x0(τ))δ(x1−x1(τ))···δ(x3−x3(τ)). It is important to note

that this expression is equivalent to the aforementioned expression Jµ = (ρ/c,J).

pf. We show that the derivative of the current density is 0, being a conservative quantity

throughout space-time.

∂µJ
µ = ∂µ

[∑
n

ˆ
qn
dxµn(τ)

dτ
δ(4)(x− xn(τ)) dτ

]
=
∑
n

ˆ
qn
dxµn(τ)

dτ

∂

∂xµ(τ)
δ(4)(x− xn(τ)) dτ

=
∑
n

ˆ
qn

d

dτ
δ(4)(x− xn(τ)) dτ

=
∑
n

qnδ
(4)(x− xn(τ))

∣∣∣τ=+∞

τ=−∞

= 0
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def. We introduce the covariant derivative through observing what kind of derivations do

not change the physics of wavefunctions despite phase change. Consider the transfor-

mation ψ → ψeiθ = ψ′. Schrodinger’s equation becomes

iℏ
∂

∂A
ψ =

1

2m
(iℏ)2ψ + V ψ

Schrodinger’s equation only works when you define a new derivative (minimal cou-

pling)

∂µ → Dµ = ∂µ − iAµ

Here, we state that Aµ → A′
µ = Aµ + ∂µθ. Then,

Dµψ → D′
µψ

′ = ∂µψ
′ − iA′

iψ
′

= eiθDµψ

= eiθ(∂µ + i∂µθψ − iA′
µψ)

7 Lecture 7

In this lecture, we define what tensors are (objects that transform contravariantly or co-

variantly) and introduce weights, which are how tensors scale when transforming. To finish

off, we introduce the concept of Vierbeins, which are metrics that allow us to convert to

locally falling frames.

recall. Before delving into the main topic, we again refer to how certain tensorial objects

transform.–

Vµ(x) → V ′
µ(x

′) =
∂xλ

∂x′µ
Vλ(x)

V µ(x) = ηµνVν(x) → V ′µ(x′)

ηµν =
∂xρ

∂x′µ
ηρσ

∂xρ

∂x′ν

η =
( ∂x
∂x′

)
η
( ∂x
∂x′

)T
η−1 =

(∂x′
∂x

)T
η−1
(∂x′
∂x

)
ηµν =

∂x′µ

∂xρ
ηρσ

∂xν

∂xσ

– 21 –



7.1 Tensors and their Weights

Using the above, we show how tensors with upper indices transform.

ηµνV ′
ν(x

′) =
∂x′µ

∂xρ
ηρσ

∂x′ν

∂xσ
∂xλ

∂x′ν
Vλ(x)

=
∂x′µ

∂xρ
ηρσVσ(x)

V ′µ(x′) =
∂x′µ

∂xρ
V ρ(x)

= Λµ
ρV

ρ

cor. We can do the same process as above and show how lower indices transform using

how upper indices transform.

V ′µ = Λµ
ρV

ρ

V ′
µ = (Λ−1)λµVλ = Vλ(Λ

−1)λµ

= Λλ
µVλ

Note that

ΛT ηΛ = η

ηΛ = (ΛT )−1η

ηΛη−1 = (Λ−1)T

Λρ
µ = (Λ−1)µρ

rmk. In representation theory, we look at matrix representations of group elements (in this

case coordinate transformations). In reference to the matrices above, we can see how

the matrix representation of a certain transformation is equal to another transfor-

mation’s (the inverse transformation) transpose. Mathematically, g =⇒ M(g) =

(M−1(g))T . In this way, the group of inverse matrices’ transpose model the original

group’s behavior.

g1g2 = g3

M(g1)M(g2) =M(g3)

M(g2)
−1M(g1)

−1 =M(g3)
−1

(M(g1)
−1)T (M(g2)

−1)T = (M(g3)
−1)T

def. We define a (p, q) tensor to be a list of components that have p upper indices and q

lower indices.

T
µ1µ2···µp
ν1ν2···νq (x) → T

′µ1µ2···µp
ν1ν2···νq (x′)
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which is equal to

||∂x
′

∂x
||w ∂x

′µ1

∂xρ1
∂x′µ2

∂xρ2
· · · ∂x

′µp

∂xρp
T
ρ1···ρp
σ1···σq

∂xσ1

∂x′ν1
· · · ∂x

σq

∂x′νq

def. We define the weight w as

||∂x
′

∂x
||w = || ∂x

∂x′
||−w

recall. We defined the current density as

Jµ(x) =
∑
n

ˆ ∞

−∞
qn
∂xµn(τ)

∂τ
δ(4)(x− xn(τ)) dτ

=
∑
n

qn

ˆ ∞

−∞
dx0n

dxµ

dx0n
δ(3)(x− xn) dx

0
n

=
∑
n

qn
dxµn
dx0n

δ(3)(x− xn)

this is equal to

=


∑

n qnδ
(3)(x− xn) = ρ

∑
n qn

dxn
dt

δ(3)(x− xn) = J

This is due to the fact that ˆ
δ(x− y)f(x) dx = f(y)

ˆ
∂x

∂x′
δ(x− y)f(x(x′)) dx′ = f(y(y′))

implying

δ(4)(x′ − y′) = || ∂x
∂x′

||1δ(4)(x− y)

When the weight is 1, we refer a tensor to be a scalar density while referring to tensors

with higher weights as vector densities. Note that we are generalizing the notion of

tensors here. We are also including objects that scale as they transform.

recall. We know for a fact that xµ → x′µ(x),

dxµ → dx′µ =
∂x′µ

∂xν
dxν

In general relativity, we state that the metric is g in general cases, a function of x

which is symmetric under the lower indices. It is a (0, 2) tensor.

gµν(x) = gνµ(x)
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After the coordinate transformation, we state that

gµν(x) → g′µν(x
′) =

∂xρ

∂x′µ
∂xρ

∂x′ν
gρσ(x)

and

gµν(x) → g′µν(x′) =
∂x′µ

∂xρ
∂x′ν

∂xσ
gρσ(x)

Note that

g = ||gµν || → g′ = || ∂x
∂x′

||2g

and
√
−g →

√
−g′ = || ∂x

∂x′
||
√
−g

which tells us that the negative square root is a scalar density with w = 1. The

following is thus a tensor with a weight of 0.

δ(4)(x)/
√
−g

7.2 Verbeins

def. We now introduce the concept of Verbeins. Simply put, Verbeins are transformations

from a curved frame to a local Lorentzian (flat) frame which we shall denote as yµ.

We say local from the fact that this definition only suffices locally as tidal forces

occur as you move further from the exact point that we are transforming from. As

you move slightly from one direction to another, you are no longer in a inertial state.

This coordinate system we are transforming to is also called the Riemann normal

coordinate system. The proper distance in this frame would be given as

ds2 = ηµνdy
µdyν = ηµνdx

ρ∂y
µ

∂xρ
dxσ

∂yν

∂xσ

= dxρdxσηµν
∂yµ

∂xρ
∂yν

∂xσ

= dxρdxσgρσ

Note that the function g would be a function of xµ as the transformation to the

locally inertial frame would vary from point to point.

def. We mathematically formally define verbiens as

gρσ(x) = eaρ(x)e
b
σ(x)ηab

a, b runs through 0,1,2, and 4. We can also express veribeins as

eaµ(X) =
∂ya

∂xµ
|x=X

In this perspective, verbeins are functions that take in points in space-time and give
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transformations from curved spacetime coordinates to locally flat coordinates.

8 Lecture 8

In this lecture, we use the verbeins to define the Christoffel symbol, which show how basis

objects transform.

8.1 More on Verbeins

def. Using the space-time metric, proper distance is given by

ds2 = gµν(x)dx
µdxν

In turn, the metric in terms of Vierbeins can be written as

gµν(x) = eaµ(x)e
b
ν(x)ηab

Here, vierbeins are functions of xµ as

eaµ(X) =
∂yaX(x)

∂xµ

∣∣∣
x=X

cor. A simple corollary to our new definition of proper distance is that proper time is

given as

dτ2 = − 1

c2
ds2 = − 1

c2
dxµdxνgµν

rmk. A special fact about verbeins are that they transform like tensors for the alphabetical

indices as we can easily change the Lorentz coordinate system we are transforming

from. Thus,

eaµ(x) → e′aµ = ebµL
a
b (x)

The space-time metric, however, would remain invariant, eaµe
b
νηab = e′aµ e

′b
ν ηab, as

Lc
aL

d
bηcd = ηab

def. In this manner, we can reformulate all transformations that we have mentioned in

the following manner.

xµ → x′µ(x)

dxµ → dx′µ =
∂x′µ

∂xρ
dxρ

dτ → dτ ′ = gµν(x)dx
µdxν = g′µν(x

′)dx′µdx′ν

gµν(x) → g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x)

dxµ

dτ
→ dx′µ

dτ
=
∂x′µ

∂xν
dxν

dτ
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8.2 The Christoffel Symbol

prop. We now consider how acceleration transforms from one frame to another and find the

necessity of another geometrical object.

d2xµ

dτ2
→ d2x′µ

dτ2
=

d

dτ

(∂x′µ
∂xλ

dxλ

dτ

)
=
∂x′µ

∂xλ
∂2xλ

∂τ2
+

d

dτ

(∂x′µ
∂xρ

)dxρ
dτ

=
∂x′µ

∂xλ
d2xλ

d2τ
+
dxσ

dτ

dxρ

dτ

∂2x′µ

∂xσ∂xρ

=
∂x′µ

∂xλ
ẍλ + ẋσẋρ

∂2x′µ

∂xρ∂xσ

=
∂x′µ

∂xλ

(
ẍλ +

∂xλ

∂x′µ
∂2x′µ

∂xρ∂xσ
ẋρẋσ

)
where we use the notation ẋµ = dxµ/dτ . We can alternatively express the above using

the coordinate system of a locally lorentz frame as the frame we are transforming to,

and acceleration would be

d2ya

dτ2
=
∂ya

∂xλ

(
ẍλ +

∂xλ

∂yc
∂2yc

∂xρ∂xσ
ẋρẋσ

)
The term we are interested in, and want to turn into in terms of the metric is,

∂xλ

∂yc
∂2yc

∂xρ∂xσ
= eλc

∂

∂xρ
ecσ

= eλb δ
b
c

∂

∂xρ
ecσ

= eλb ecκe
κb ∂

∂xρ
ecσ

= gλκeκc

( ∂

∂xρ
ecσ

)
= −gλκ(∂ρeκc)ecσ + gλk

∂

∂xρ
gκσ

= −gλκ(∂keρc)ecσ + gλκ
∂

∂xρ
gκσ

There are a few points refer to. In moving from the second line to the third, we

expanded the Kronecker delta into two verbien terms which follow from the fact that

eκce
bκ = eaκηacη

bdeκd

with a being a free variable,

eκce
bκ = edκηdcη

bdeκd = δbc
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Therefore,

d2ya

dτ2
=
∂ya

∂xλ

[
ẍλ + gλκ

(
∂ρgκσ − (∂κeρc)e

c
σ

)
ẋρẋσ

]
=
∂ya

∂xλ

[
ẍλ + gλκ

(
∂ρgκσ − (∂κeρce

c
σ) + eρc(∂κe

c
σ)
)]

=
∂yλ

∂xλ

[
ẍλ + gλκ

(
∂ρgκσ − ∂κgρσ + (∂κeρce

c
σ)− ecσ(∂κeρc)

)]
=
∂ya

∂xλ

[
ẍλ +

1

2
gλκ
(
∂ρgκσ − ∂κgρσ + ∂σgκρ

)
ẋρẋσ

]
=
∂ya

∂xλ

[
ẍλ +

1

2
gλκ(∂ρgκσ + ∂σgκρ − ∂κgρσ)ẋ

ρẋσ
]

=
∂ya

∂xλ

(
ẍλ + Γλ

ρσẋ
ρẋσ
)

def. The symbol gamma is referred as the Christoffel symbol, the diffeomorhpism connec-

tion, or the affine connection.

Γλ
µν(x) =

1

2
gλρ
(
∂µgρν + ∂νgµρ − ∂ρgµν

)
lem. Note that for the second line to the third line, we have utilized the following lemma

for tensors symmetric in the lower two indices.

Aµν ẋ
µẋν = Aνµẋ

ν ẋµ

= Aνµẋ
µẋν

=
1

2
(Aµν +Aνµ)ẋ

µẋν

def. Note that in free fall, the acceleration term would become zero.

d2y

dτ2
= 0

We thus obtain the following equation

ẍλ + Γλ
µν ẋ

µẋν = 0

rmk. In most the space-time metric can be approximated by the minkowskian metric and

an additional pertubation term.

gµν = ηµν + δgµν = ηµν + hµν

thm. We now show that we can approximate Newton’s gravitational potential through

assuming low speeds. In the majority of times, we refer to a stationary reference
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frame with ẋµ = (ẋ, ẋ) ≈ (c, 0, 0, 0). Thus, we are capable to approximate the geodesic

equation as

0 = ẍi + Γi
µν ẋ

µẋν ≈ ẍi + c2Γi
00

where

Γi
00 =

1

2
giλ
(
∂0gλ0 + ∂0g0λ − ∂λg00

)
which is approximately

≈ −1

2
∂ig00

substituting, we can approximate a particle’s acceleration as

ẍi ≈ −c2Γi
00 ≈

1

2
c2∂ig00

we hereof state without explanation that when solving this equation, at low speeds,

we have the metric to be approximately

g00 ≈ −1− 2Φ

c2

which is Newton’s gravitational potential.

9 Lecture 9

9.1 Calculus of Variations

recall. We said that the acceleration of the LLF can be expressed as

ÿa = eaµ

[
ẍµ + Γµ

ρσẋ
ρẋσ
]

Where the Christoffel symbol can be written as

Γµ
ρσ =

1

2
gµν(∂ρgνσ + ∂σgρν − ∂νgρσ)

Also recall that the space-time metric can be written as

gµν(x) = eaµ(x)e
b
ν(x)ηab

where

eaµ(X) =
∂ya

∂xµ

∣∣∣
x=X

prop. Consider a line parametrized by a parameter lambda. The end points are denoted as
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λ1 and λ2. The path of shortest length can be described by the following equation.

0 = δ

ˆ λ2

λ1

√
ẋ2 + ẏ2 dλ

=

ˆ λ2

λ1

2ẋδẋ+ 2ẏδẏ

2
√
ẋ2 + ẏ2

dλ

= −
ˆ λ2

λ1

δx
d

dλ

( ẋ√
ẋ2 + ẏ2

)
+ δy

d

dλ

( ẏ√
ẋ2 + ẏ2

)
dλ

the last term follows from integration by parts. We now know that the terms in the

parentheses vanish (we further assumed that δx = 0 at λ = λ1 or λ = λ2).

rmk. We want to show that the parameter lambda is best set as distance. Consider taking

λ→ λ′(λ), and 
dλ =

dλ

dλ′
dλ′

dx

dλ
=
dλ′

dλ

dx

dλ′

ˆ λ2

λ1

√(dx
dλ

)2
+
(dy
dλ

)2
dλ =

ˆ λ′
2

λ′
1

√( dx
dλ′

)2
+
( dy
dλ′

)2
dλ

=
√
dx2 + dy2

∣∣∣2
1

Thus we choose the parameter λ to be distance for the final line. With a Gauge choice

of
√
ẋ2 + ẏ2 = 1.

prop. We now finally use the variational principle to derive the geodesic equation.

S =

ˆ √
−gµν(x)ẋµẋν dλ

δS =

ˆ
δ(−gµν ẋµẋν)
2
√

−gµν ẋµẋν
dλ

=

ˆ −δxλ∂λgµν ẋµẋν − gµνδẋ
µẋν − gµν ẋ

µδẋν

2
√
−gµν ẋµẋν

dλ

=

ˆ −δxλ∂λgµν ẋµẋν

2
√

−gµν ẋµẋν
+ δxµ

d

dλ

( gµν ẋ
ν

2
√
−gµν ẋµẋν

)
+ δxν

d

dλ

( gµν ẋ
µ

2
√

−gµν ẋµẋν
)
dλ

=

ˆ
−1

2
δxµ∂λgµν ẋ

µẋν +
1

2
δxµ

d

dλ

(
gµν ẋ

ν
)
+

1

2
δxν

d

dλ

(
gµν ẋ

µ
)
dλ

=

ˆ
−1

2
δxµ∂λgµν ẋ

µẋν + δxµ(gµν ẍ
ν + ẋλ∂λgµν ẋ

ν) dλ

=

ˆ
δxµgµν

(
ẍν +

1

2
gνρ(∂λgρσ + ∂σgρλ − ∂ρgλσ)ẋ

ν)
)
dλ
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10 Lecture 10

In this lecture we create tensorial version of a derivative (the covariant derivative).

10.1 The Covariant Derivative

recall.

V µ(x) → V ′µ(x′) =
∂x′µ

∂xρ
V ρ(x)

∂λV
µ → ∂′λV

′µ =
∂xσ

∂x′λ
∂

∂xσ

(∂x′µ
∂xρ

V ρ
)

=
∂xσ

∂x′λ
∂x′µ

∂xρ
∂σV

ρ +
∂xσ

∂x′λ
∂2x′µ

∂xσ∂xρ
V ρ

∂λVµ → ∂′λV
′
µ =

∂xσ

∂x′λ
∂σ

( ∂xρ
∂x′µ

Vρ

)
=
∂xσ

∂x′λ
∂xρ

∂x′µ
∂σVρ +

∂2xρ

∂x′λ∂x′µ
Vρ

lem. In this lecture we prove the following lemma for second derivatives.

∂2xρ

∂x′λx′µ
=
∂xν

∂x′λ
∂

∂xν

( ∂xρ
∂x′µ

)
=
∂xν

∂x′λ
∂xρ

∂x′α
∂2x′α

∂xν∂xβ
∂xβ

∂x′µ

and thus
∂x′ν

∂xρ
∂2xρ

∂x′λ∂x′µ
=
∂xα

∂x′λ
∂xβ

∂x′µ
∂2x′ν

∂xα∂xβ

not different from

∂M−1 =M−1∂MM−1

and

∂(MM−1) = 0

prop. In this lecture we will consider ∂λgµν → ∂′λg
′
µν and see how the metric transforms.

∂′λg
′
µν =

∂xγ

∂x′λ
∂

∂xν

( ∂xα
∂x′µ

∂xβ

∂x′ν
gαβ(x)

)
=
∂xγ

∂x′λ
∂xα

∂x′β
∂xµ

∂x′ν
∂γgαβ +

( ∂2xα

∂x′λ∂x′µ
∂xβ

∂x′ν
+
∂xα

∂x′µ
∂2xβ

∂x′λ∂x′γ

)
gαβ

– 30 –



now, calculating the transformed Christoffel symbols,

Γλ
µν =

1

2
gλρ(∂µgργ + ∂νgµρ − ∂ρgµν)

Γ′λ
µν =

1

2
g′λρ(∂′µg

′
ρν + ∂′νg

′
µρ − ∂′ρg

′
µν)

=
1

2

∂x′λ

∂xα
∂x′ρ

∂xβ
gαβ
[ ∂xγ
∂x′µ

∂xk

∂x′ρ
∂xσ

∂x′ν
∂γgkσ(∂γgkσ + ∂σgkγ − ∂kgγσ)

+
( ∂2xα

∂2x′µ∂x′ν
∂xβ

∂x′ν
+
∂xα

∂x′ρ
∂2xβ

∂x;µ ∂x′ν
+

∂2xα

∂x′ν∂x′ρ
∂xβ

∂x′µ
+
∂xα

∂x′ρ
∂2xβ

∂x′ν∂x′µ

− ∂x2xα

∂x′ρ∂x′ν
∂xβ

∂x′µ
− ∂xα

∂x′ν
∂2xβ

∂x′ρ∂x′µ

)
gαβ
]

=
1

2

∂x′λ

∂xα
∂xγ

∂x′µ
∂xσ

∂x′ν
gαk(∂γgkσ + ∂σgkγ − ∂kgγσ) +

∂x′λ

∂xϕ
∂x′ρ

∂xζ
gϕζ

∂xα

∂x′ρ
∂2xβ

∂x′µ∂x′µ∂x′ν
gαβ

=
∂x′λ

∂xα
∂xγ

∂x′µ
∂xσ

∂x′ν
Γα
γσ +

∂x′λ

∂xβ
∂2xβ

∂x′µ∂x′ν

=
∂x′λ

∂xα

( ∂xβ
∂x′µ

∂xγ

∂x′ν
Γα
βγ +

∂2xα

∂x′µ∂x′ν

)
and therefore

∂µVν → ∂′µV
′
ν =

∂xα

∂x′µ
∂xβ

∂x′ν
∂αVβ +

∂2xα

∂x′µ∂x′ν
Vα

=
∂xα

∂x′µ
∂xβ

∂x′ν
∂αVβ +

( ∂xα
∂x′λ

Γ′λ
µν −

∂xβ

∂x′µ
∂xγ

∂x′ν
Γα
βγ

)
Vα

=
∂xα

∂x′µ
∂xβ

∂x′ν

(
∂αVβ − Γγ

αβVγ

)
+ Γ′λ

µνV
′
λ

We thus identify a covariant form of the partial derivatives

∂′µV
′
ν − Γ′ρ

µνV
′
ρ =

∂xα

∂x′µ
∂xβ

∂x′ν

(
∂αVβ − Γγ

αβVγ

)
Thus we define the covariant derivative to be

∇µVν = ∂µVν − Γλ
µνVλ

With the vector having a upper index,

∇µV
ν = ∂µV

ν + Γν
µλV

λ

thus for an arbitrary tensor T ,

∇λT
µ1···µp
ν1···νq = ∂λT

µ1···µp
ν1···νq − wΓρ

λρT
µ1···µp
ν1···νq T

µ1···µp
ν1···νq +

P∑
i=1

Γµi

λρT
µ1···µp
ν1···νq −

q∑
j=1

Γρ
λνj
T
µ1···µp
ν1···νq
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11 Lecture 11

In this lecture, we learn a central assumption regarding general relativity, which is that

there is no torsion in spacetime. This is equivalent to saying that the Christoffel symbol

is symmetric on the lower indices. We also learn how the metric is covariantly constant,

meaning that the covariant derivative of the metric is zero. We finish by showing that there

always exists a frame such that the Christoffel symbol is zero. This frame is also called the

Riemann normal coordinate system.

recall. Last class, we saw how the Christoffel symbol transformed, namely

Γλ
µν → Γ′λ

µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
∂x′λ

∂xκ
Γκ
ρσ(x) +

∂2xρ

∂x′µ∂x′ν
∂x′λ

∂xρ

the partial, on the other hand,

∂µV
ν(x) → ∂′µV

′ν(x′) =
∂xρ

∂x′ρ

(∂x′ν
∂xσ

V σ
)

=
∂xρ

∂x′µ
∂x′ν

∂xσ
∂ρV

σ +
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xσ
V σ

The second term of the last equation is equal to

∂xρ

∂x′µ
∂

∂xρ

(∂x′ν
∂xσ

)
=

∂

∂x′µ

(∂x′ν
∂xσ

)
= −∂x

′κ

∂xα
∂2xρ

∂x′µ∂x′κ
∂x′ν

∂xρ

and thus we obtain, continuing from the partial transformation,

=
∂xρ

∂x′µ
∂x′ν

∂xσ
∂ρV

σ − ∂x′κ

∂xσ
∂2xρ

∂x′µ∂x′κ
∂x′ν

∂xρ
V σ

11.1 Torsionlessness

def. In general relativity we assume no torsion, with Γλ
µν = Γλ

νµ. We define torsion to be

Γλ
µν − Γλ

νµ (thus the Christofell symbol is symmetric in its lower indices).

11.2 Metric Compatibility

rmk. We state as a fact that ∇λgµν = 0 and that the metric is covariantly constant ( ⇐⇒
∇λ and gµν are compatible). In this case, we say that the ”connection” is torsionless.

Then, the ”connection” is the Christoffel symbol. Consider adding

∇λgµν = ∂λgµν − Γρ
λµgρν − Γρ

λνgµρ

and

+∇µgνλ = ∂µgνλ − Γρ
µνgρλ − Γρ

µλgνρ

– 32 –



and

−∇νgλµ = ∂νgλµ − Γρ
νλgρµ − Γρ

νµgλρ

which is equal to

0 = ∇λgµν +∇µgνλ −∇νgλµ = ∂λgµν + ∂µgνλ − ∂νgλµ − 2Γρ
λµgρν

and we thus conclude

Γν
λµ =

1

2
gνρ
(
∂λgρµ + ∂µgλρ − ∂ρgλµ

)

HW. The homework was to vertify that ∇λgµν = 0 by inserting the definition of Gamma

into the equation above. Plugging our definition of the Christoffel symbol into the

first equation we obtain

∇λgµν = ∂λgµν −
1

2
gρν(∂λgνµ + ∂µgλν − ∂νgλµ)gρν −

1

2
gρµ(∂λgµν + ∂νgλµ − ∂µgλν)gµρ

which is indeed equal to zero.

11.3 The Riemann Normal Coordinate System

def. In a locally inertial frame (freely falling frame) the certain equality would hold

gµν

∣∣∣
y=0

= ηµν

The fact that space is torsionless, we are able to say

∂λgµν

∣∣∣
y=0

= 0

thm. We now prove that a frame exists such that the Christoffel symbol is zero. Consider

the geodesic equation

ẍλ + Γλ
µν ẋ

µẋν = 0

We say that the initial conditions are given as{
xµ(τ0) = xµ0

ẋµ(τ0) = V µ

The unique solution would be given as

xµ(τ) = fµ(τ, x0, V )
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where 
fµ(τ0, x0, V ) = xµ0

dfµ

dτ
(τ0, x0, V ) = V µ

For a constant κ, we consider
fµ(τ, x0, κV )

fµ(κ(τ − τ0) + τ0, x0, V )

which would both satisfy the equation as

dfµ

dτ
= κ

dfµ(τ ′, x0, V )

dτ ′

∣∣∣
τ ′→κτ

d2fµ

dτ2
= κ2

d2fµ(τ ′, x0, V )

dτ2

now, consider a coordinate transformation from xµ → vµ.

xµ(τ) = fµ(τ, x0, V ) = fµ(1, x0, τv0) = fµ(1, x0, v(τ))

In this frame, which we call the Riemann normal coordinate system,

vµ(τ) = τV µ

and
d2vµ

dτ2
+ Γµ

νρv̇
ν v̇ρ = 0

and thus the Christoffel symbol is zero.

12 Lecture 12

In this lecture, we delve into weights of tensors, which are how they scale of a power of the

reciprocal of the Jacobian as they transform. Then, we see how we can calculate variations

of a determinant of a function. By doing so, we notice that we need a stronger condition

for which space-time is flat. We then derive the curvature by seeking a covariant tensor

constructable with double derivatives of the metric.

12.1 Weights of Tensors

recall. Consider the following statement about the metric tensor that suggests that the

metric is covariantly constant.

∇λgµν = 0
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Simply put, this face implies that the space is flat up to the first derivative of the

metric. Also called metric compatibility, it implies that the covariant derivative is

constructed in a way to keep the metric constant.

thm. On another note, now observe the transformation of the metric tensor

gµν(x) → g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x)

The metric’s determinant can be seen to scale like the following.

g = det(g(x)) → det(g′(x)) = g′ = || ∂x
∂x′

||2g

Note that we have defined g to represent the determinant of the metric. We thus claim

the metric to be a tensor of weight 2, and its determinant to be a tensor density (not

a tensor) of weight 2. The determinant of the negative square root of the metric is

thus a scalar density with weight w = 1 (here, we define the weight to be the power

of ||∂x/∂x′|| not ||∂x′/∂x||).

√
−g →

√
−g′ = || ∂x

∂x′
||
√
−g

12.2 Derivative of the Determinant and Divergence

thm. The determinant of a n × n matrix can be derivated as follows (the determinant’s

variation).

||M || =
∑

a1,···,an
ϵa1···anM1a1M2a2 · · ·Mnan

δ||M || =
∑

a1,···,an
ϵa1···an

( n∑
j=1

M1a1 · · · δMjaj · · ·Mnan

)
=

∑
a1,···,an

ϵa1···an
( n∑

j=1

M1a1 · · · δbaj · · ·Mnan

)
δMjb

=
∑

a1,···,an
ϵa1···an

( n∑
j=1

M1a1 · · ·Mcaj · · ·Mnan

)
(M−1)bcδMjb

=
∑

a1,···,an

n∑
j=1

(
ϵa1···anM1a1 · · ·Mcaj · · ·Mnan

)
(M−1)bcδMjb

=
n∑

j=1

||M ||δjc(M−1)bcδMjb = ||M ||(M−1)bcδMcb

thus we obtain

δ||M || = ||M ||(M−1)abδMba
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dividing both sides by the determinant,

δ||M ||
||M ||

= (M−1)abδMba

we can express the left side as the variation of the natural logarithm of the deter-

minant, while the right hand side is a summation over all permutations of a and b.

Doing so, we realize that it is equal to the trace of the matrix product M−1δM .

δ ln||M || = Tr(M−1δM)

thm. Now we return to the metric tensor. Derivating the determinant of the metric and

the negative square root we derive that

∂µg = g gρσ∂µgσρ

∂µ
√
−g =

1

2

1√
−g

∂µg

=
1

2

√
−g gρσ∂µgσρ

However, we know that

Γλ
µν =

1

2
gλρ(∂µgρν + ∂νgµρ − ∂ρgµν)

Γλ
µλ =

1

2
gλρ(∂µgρλ + ∂λgµρ − ∂ρgµλ)

Thus we obtain the expressions

∂µ
√
−g =

√
−g Γλ

µλ

∂µg = 2g Γλ
µλ

In general, the covariant derivative of a tensor density becomes

∇λT
ν1···
µ1··· =∂λT

ν1···
µ1··· − wΓρ

λρT
ν1···
µ1··· +

(∑
j

Γ
νj
λρT

ν1···ρ···
µ1···

)
−
(∑

k

Γσ
λµk

T ν1···
µ1···σ···

)
This is why the following hold {

∇µg = 0

∇µ
√
−g = 0

rmk. Take the current density. It can be easily noted how our definition lacked the notice
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of it actually being a tensor density.

Jµ(x) → J ′µ(x) = || ∂x
∂x′

||−1∂x
′µ

∂xν
Jν

∇µJ
µ = ∂µJ

µ = ∂µJ
µ − Γν

µνJ
µ + Γµ

µνJ
ν

thm. A cool trick can be done for (1,0)-tensors of weight of weight zero or w = 0 (vectors).

The divergence simply becomes

∇µV
µ = ∂µV

µ + Γµ
µρV

ρ

= ∂µV
µ +

∂µ
√
−g√

−g
V µ

=
1√
−g

∂µ(
√
−g V µ)

def. If you observe the proper distance in terms of spherical coordinates,

ds2 = −dt2 + dx2 + dy2 + dz2

= −dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2

= gµνdx
µdxν

using these coordinates, where xµ = (t, r, θ, ϕ) rather than xµ = (t, x, y, z), we notice

that the metric changes from 
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


to 

−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ


The metric in the upper case leads to Γλ

µν = 0 while the lower metric leads to

Γλ
µν ̸= 0 with

√
−g = r2 sin2 θ. We conclude that we need a more concrete condition

for a certain space to be flat. The answer lies in the curvature of that space. Note

that 
x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

r =
√
x2 + y2 + z2
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12.3 Curvature and Riemann Curvature

note. We then ask the following question: can we construct a covariant tensor from ∂λgµν?

The answer is no! However, we can construct a covariant tensor from double deriva-

tives of gµν . The answer is curvature.

def. The curvature is defined as the commutator operator operated upon two covariant

derivatives, or

[∇µ,∇ν ]

we note that

[∂µ, ∂ν ]

We now calculate the double covariant derivative of an arbitrary vector.

∇µ∇νV
λ = ∂µ(∇νV

λ)− Γρ
µν∇ρV

λ + Γλ
µρ∇νV

ρ

= ∂µ(∂νV
λ + Γλ

νρV
ρ)− Γρ

µν(∂ρV
λ + Γλ

ρσV
σ)

+ Γλ
µρ(∂νV

ρ + Γρ
νσV

σ)

= ∂µ∂νV
λ + ∂µΓ

λ
νρV

ρ + Γλ
νρ∂µV

ρ

− Γρ
µν(∂ρV

λ + Γλ
ργV

σ) + Γλ
µρ(∂νV

ρ + Γρ
νσV

σ)

Considering only the remaining terms, we obtain

[∇µ,∇ν ]V
λ = (∂µΓ

λ
νρ − ∂νΓ

λ
νρ)V

ρ +
(
Γλ
µρΓ

ρ
νσ − Γλ

νρΓ
ρ
µσ

)
V σ

= (∂µΓ
λ
νσ − ∂νΓ

λ
µσ + Γλ

µρΓ
ρ
νσ − Γλ

νρΓ
ρ
µσ)V

σ

= Rλ
σµνV

σ

We thus write the Riemann curvature as

Rκ
λµν = ∂µΓ

κ
νλ − ∂νΓ

κ
µλ + Γκ

µρΓ
ρ
νλ − Γκ

νρΓ
ρ
µλ

where

[∇µ,∇ν ]V
λ = Rλ

ρµνV
ρ

In other notation, using Γ∗
µ∗

R∗
∗µν = (∂µΓµν − ∂νΓµ + [Γµ,Γν ])

∗
∗

curvature can alternatively defined as the field strength of curvature.

13 Lecture 13

We investigate important properties of the curvature tensor and introduce the Bianchi iden-

tity.

– 38 –



def. The levi-civita symbol is defined as

ϵa1a2···an =


+1 even permutation

−1 odd permutation

0 otherwise

def. The determinant is defined through this symbol as

||M || =
∑

a1,···,an
ϵa1···anM1a1 · · ·Mnan

recall. The important theorem from the last lecture was

δ ln||M || = Tr(M−1δM)

and from this, we have the following corollary

∂µ||g|| = 2 Γν
µν ||g||

with ∇µ||g|| = 0.

thm. From the above, we theorize that tensors with different weights transform like the

following. As a density,

∂µT → ∂′µT
′ = ∂′µT =

∂xν

∂x′µ
∂νT

but with a weight w,

∂µT → ∂′µT
′ = ∂′µ

(
||∂x

′

∂x
||−wT

)
= ||∂x

′

∂x
||−w ∂x

ν

∂x′µ
∂νT − w||∂x

′

∂x
||−w ∂x

λ

∂x′ρ
∂2x′ρ

∂xµ∂xλ
T

(notes on weight redacted)

13.1 Properties of Curvature

recall. We learnt that curvature is defined as

[∇µ,∇ν ]V
λ = Rλ

ρµνV
ρ

where

Rλ
ρµν = (∂µΓν − ∂νΓµ + [Γµ,Γν ])

λ
ρ

= ∂µΓ
λ
νρ − ∂νΓ

λ
µρ + Γλ

µσΓ
σ
νρ − Γσ

νρ − Γλ
νσΓ

σ
µρ
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What about of the general case?

[∇µ,∇ν ]T
λ1···λp
κ1···κq

for now we first note that for vectors with lower indices,

[∇µ,∇ν ]Vλ = ∇µ∇νVλ − (µ↔ ν)

= ∂µ(∇νVλ)− Γρ
µν∇ρVλ − Γρ

µν∇νVρ − (µ↔ ν)

= ∂µ(∂νVλ − Γρ
νλVρ)− Γρ

µλ(∂νVρ − Γσ
νρVσ)− (µ↔ ν)

= −Rρ
λµνVρ

recall. Given the following way that the Christoffel symbol transforms, we can see that the

curvature transforms covariantly.

Γλ
µν → Γ′λ

µν =
∂x′λ

∂xκ
∂xρ

∂x′µ
∂xσ

∂x′ν
Γκ
ρσ +

∂x′λ

∂xρ
∂2xρ

∂x′µ∂x′ν

this is left as homework, to check that,

Rλ
ρµν → R′λ

ρµν =
∂x′λ

∂xκ
∂xσ

∂x′ρ
∂xα

∂x′µ
∂xβ

∂x′ν
Rκ

σαβ

def. The object Rλ
ρµν is called the Riemann curvature. There are many characteristics

that are important regarding the Riemann curvature. Suppose lowering the indices,

Rκλµν = gκρR
ρ
λµν

Rκλµν = −Rκλνµ = −Rλκµν = Rλκνµ = Rµνκλ

rmk. A trick regarding obtaining the relationship above, in the local inertial frame, Γλ
µν = 0

and ∂µgνρ = 0. The curvature becomes,

Rλρµν = ∂µ(gλαΓ
α
νρ)− ∂ν(gλαΓ

α
µρ)

=
1

2
∂µ(∂νgλρ + ∂ρgνλ − ∂λgνρ −

1

2
∂ν(∂µgλρ + ∂ρgµλ − ∂λgµρ)

=
1

2
(∂µ∂νgλρ + ∂µ∂ρgνλ − ∂µ∂λgνρ − ∂ν∂µgλρ − ∂ν∂ρgµλ + ∂ν∂λgµρ)

=
1

2
(∂µ∂ρgνλ − ∂µ∂λgνρ − ∂ν∂ρgµλ + ∂ν∂λgµρ)

13.2 The Bianchi Identity

def. Any commutator satisfies the Bianchi identity,

[A[B,C]] + [B[C,A]] + [C[A,B]] = 0
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As a commutative operator, it also works for the covariant derivative, and

0 = [∇λ[∇µ,∇ν ]]V
κ + (cyclic λ, µ, ν)

= ∇λ([∇µ,∇ν ]V
κ)− [∇µ,∇ν ](∇λV

κ) + (cyclic λ, µ, ν)

= ∇λ(R
κ
ρµνV

ρ)− (Rκ
ρµν∇λV

ρ −Rρ
λµν∇ρV

κ) + (cyclic λ, µ, ν)

= ∇λR
κ
ρµνV

ρ +Rκ
ρµν∇λV

ρ −Rκ
ρµν∇λV

ρ −Rρ
λµν∇ρV

κ + (cyclic λ, µ, ν)

= (∇λR
κ
ρµν +∇µR

κ
ρνλ +∇νR

κ
ρλµ)V

ρ − (Rρ
λµν +Rρ

µνλ +Rρ
νλµ)∇ρV

κ = 0

in result, we obtain the differential Bianchi identity,

∇λR
ρσ
µν +∇µR

ρσ
νλ +∇νR

ρσ
λµ = 0

also,

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0

thm. If and only if Rκ
λµν = 0, one can find a coordinate system where gµν = ηµν , i.e., flat

space-time.

14 Lecture 14

In this lecture, we learn the commutator and permutator operator and relevant notation.

Afterwards, through the Bianchi identity, we derive the Einstein curvature, arriving at

the Einstein field equations. As a constituent of the equations, we investigate the energy

momentum tensor for electrodynamics.

recall. In the last class, we defined the Riemann curvature as

Rκ
λµν =∂µΓ

κ
νλ − ∂νΓ

κ
µλ + Γκ

µρΓ
ρ
νλ − Γκ

νρΓ
ρ
µλ

Rκλµν =Rµνκλ = R[κ,λ][µ,ν]

∇[λRµ,ν]ρσ =0

14.1 Commutator and Permutator Notation

def. With the commutator notation in the lower indices, we write (for tensor Tλ1λ2···λn),

T[λ1λ2···λn] =
∑
σ

1

n!
sgn(σ)Tλσ(1))λσ(2)···λσ(n)

Where σ denotes a permutation for a totally anti-symmetric tensor. For a totally

symmetric tensor, we obtain

T(λ1λ2···λn) =
∑
σ

1

n!
Tλσ(1)λσ(2)···λσ(n)
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thm. Using this notation, we can rewrite tensors like the following.

Fµν =∂µAν − ∂νAµ

M(µν) =
1

2
M(Mµν +Mνµ)

F[µν] = Fµν

M[µν] =
1

2
(Mµν −Mνµ)

∂[λFµν] = 0

gµν = g(µν)

=
1

2
(∂λFµν + ∂νFλµ + ∂µFνλ

g[µν] = 0

=
1

6
(∂λFµν − oar)λFνµ + · · ·)

Mµν =M[µν] +M(µν)

ϵκλµν = ϵ[κλµν]

14.2 Ricci Curvature

def. We now use metric contraction to create a expression with 2 indices. We state that

there is only one way to contract two indices from the expression above, and we call

the result the Ricci curvature.

Rµν = Rλ
µλν = Rλ

µνλ = Rνµ

The Ricci curvature can be again contracted by the metric to give a scalar curvature.

R = gµνRµν = Rµν
µν

Note that the order we went through was Riemann, Ricci, and scalar curvatures. In

low dimensions, these are identical.

recall. The Bianchi identity was given as

∇λRµνρσ + λµRνλρσ +∇νRλµρσ = 0

When contracting each term with the metric, we can only choose one from the first

three and one from the latter two. Using gλρ to contract,

∇λR
λ
µνσ −∇µRνσ +∇νRµσ = 0

then,

∇λR
λ
σµν −∇µRνσ −∇νRµσ = 0
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select one from µ and ν, and contract with sigma (gσµ) to obtain

−∇λR
λ
ν −∇µR

µ
ν +∇νR = 0

notice that the above becomes

−2∇λR
λ
ν +∇νR =∇λR

λ
ν − 1

2
∇νR = 0

∇λ(R
λ
ν − 1

2
δλνR) =0

∇λ(R
λµ − 1

2
gλµR) = 0

∇λ(Rλµ − 1

2
gλµR) = 0

14.3 Einstein Curvature and the Einstein Field Equations

def. We newly define the Einstein curvature/tensor as

Gµν = Rµν −
1

2
gµνR

thus obtaining

∇µG
µ
ν = 0

which is covariantly conserved.

note. we use for the above,

gλρ∇µRνλρσ = ∇µ(g
λρRνλρσ)

thm. In Newtonian gravity,

∇2Φ = 4πGρ

The Einstein field equations are

Gµν = 8πGTµν

The left is the Einstein curvature and the right-side is the energy-momentum tensor.

Note that

∇µG
µ
ν = 0

And Gµ
ν is identically conserved/off-shell conserved and

∇µT
µ
ν = 0

is on-shell conserved. The left-hand-side of the equation denotes information about

space-time, while the right-hand-side writes information about matter.

– 43 –



14.4 The Energy-momentum Tensor in Electrodynamics

rmk. The energy-momentum tensor in electrodynamics can be expressed as

Tµν =FµρF ν
ρ − 1

4
gµνF ρσFρσ

we note that

Tµ
µ = 0

and that the tensor is traceless.

∇µT
µν =∇µ(F

µρF ν
ρ − 1

4
gµνF ρσFρσ)

=∇µF
µρF ν

ρ + Fµρ∇µF
ν
ρ − 1

4
∇ν(F ρσFρσ)

=∇µF
µρF ν

ρ + Fµρ∇µF νρ − 1

2
∇νF ρσFρσ

=∇µF
µρF ν

ρ +
1

2
Fµρ(∇µF νρ −∇ρF νµ −∇νFµρ)

=∇µF
µρF ν

ρ +
3

2
Fµρ∇[ρFµν]

now,

∇µT
µν =∇µF

µρF ν
ρ +

3

2
Fµρ∇[ρFµν]

=JρF ν
ρ + 0

=F ν
ρ J

ρ

with Jµ = 0, ∇µT
µν = 0.

note. Note that we used

Fµρ∇µF νρ = −Fρµ∇µF νρ = −Fµρ∇ρF νµ

rmk. next class, we derive that with the existence of a particle,

∇µT
µν = −F ν

ρ J
ρ

summing up with the expression above to become zero.

Tµν
total = Tµν

EM + Tµν
particle

and

∇µT
µν
total = 0
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15 Lecture 15

In this lecture, we finish off the discussion about the energy-momentum tensor in electro-

dynamics, calculating its divergence to derive energy and momentum conservation.

15.1 More on the Energy-momentum Tensor In Electrodynamics

recall. We recall a few things from last class. We first learned that the Einstein tensor was

given as

Gµ = Rµν −
1

2
gµνR

forming the Einstein field equation,

Gµν = 8πGTµν

The Einstein curvature satisfies the off-shell (Bianchi identity), irrelevant of coordi-

nate system

∇µG
µν = 0

whereas the energy-stress tensor satisfies the on-shell identity

∇µT
µν = 0

we also specified the stress energy tensor for electromagnetic fields where

Tµν
EM = FµρF ν

ρ − 1

4
gµνFρσF

ρσ

rmk. For the following equation to have same weights,

∇µJ
µν − Jν = 0

we require a little change in our definition of current density, where you add the

square root of the metric in the denominator.

thm. We now slightly state the Lagrangian formalism of general relativity. We integrate

(find the variation of)

ˆ √
−gR+ Lmatter +m

√
−gµν ẋ2ẋ2 d4x

The first term gives 16πGµν and the second
√
−gFµνF

µν .

def. The energy momentum tensor for a point particle is

Tµν(x) =
∑
n

ˆ ∞

−∞
mn

dxµn
dτ

dxνn
dτ

δ(4)(x− xn(τn))√
−g(x)

dτ
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thm. We now calculate the divergence of this tensor. We obtain

∇µT
µν(x) =∂µT

µν + Γµ
µρT

ρν + Γν
µρ + Γν

µρT
µρ

and∑
n

∂µ

ˆ
mẋµnẋ

ν
n

δ(4)(x− xn)√
−g(x)

dτ =
∑
n

ˆ
mẋµnẋ

ν
n∂µ

(δ(4)(x− xn)√
−g

)
dτ

=
∑
n

ˆ
mẋνnẋ

µ
n

[∂µδ(4)(x− xn)√
−g

+ ∂µ

( 1√
−g

)
δ(4)(x− xn)

]
dτ

=
∑
n

ˆ
mẋνnẋ

µ
n

(−∂/∂xµnδ(4)(x− xn)√
−g

− Γλ
λµ

δ(4)(x− xn)√
−g

)
dτ

=
∑
n

ˆ
m− ẋνn

d/dtδ(4)(x− xn)√
−g

− Γλ
λµT

µν dτ

and thus the divergence becomes

∇µT
µν(x) =

∑
n

m

ˆ
− ẋ

ν
n(τ)d/dtδ

(4)(x− xn(τ))√
−g(x)

+ Γν
µρT

µρ dτ

using integration by parts,

=
∑
n

m

ˆ
ẍνn(τ)δ

(4)(x− xn(τ))√
−g

+
Γν
µρẋ

µẋρδ(4)(x− xn)√
−g

dτ

we arrive at ∑
n

m

ˆ
(ẍνn + Γν

µρẋ
µ
nẋ

ρ
n)
δ(4)(x− xn)√

−g
dτ

which shall be equal the Lorentz force

=
∑
n

ˆ
qF ν

ρ ẋ
ρ
n

δ(4)(x− xn)√
−g

; dτ = F ν
ρ (x)J

ρ(x)

as

m
D2xµ

Dτ2
= m(ẍµ + Γµ

ρσẋ
ρẋσ) = qFµ

ν ẋ
ν

now,

∇µT
µν
EM =− F ν

ρ J
ρ

∇µ(T
µν
particle + Tµν

EM) =0

now this encapsulates both energy and momentum conservation.
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note. for the metric tensor,

0 =∇µ
√
−g = ∂µ

√
−g − Γλ

λµ

√
−g

∂µ
√
−g =Γλ

λµ

∂µ
1√
−g

=− ∂µ
√
−g

(
√
−g)2

=
−Γλ

λµ√
−g

∂µ(
√
−g)n =nΓλ

λµ(
√
−g)n

16 Lecture 16

By approximating the metric as a slight variation of a flat metric, we obtained a linearized

version of the Einstein field equations Then, we get a elementary introduction to gauge

symmetry.

16.1 The Linearized Einstein Field Equations

recall. The Einstein field equations were given by

Rµν −
1

2
gµνR =

8πG

c2
Tµν

whereas for a point particle, the stress-energy tensor was given as

Tµν =
∑
b

mn

ˆ
ẋµnẋ

ν
n

δ(4))(x− xn(τ))√
−g(x)

dτ

the (0, 0) indice of the stress energy tensor is

T 00 ≈ mnc
2ṫ2

on the Earth’s surface,

gµν ≈ ηµν ± 10−6

rmk. We use the perturbation method to obtain a linearised version of the Einstein field

equations. By linearization we mean that we express the metric as

gµν ≈ ηµν + hµν

also expressible as δgµν = hµν . What about the inverse of the metric?

gµν ≈ ηµν − ηµρhρση
σν = ηµν + δgµν = ηµν − hµν

as we require that they multiply to give the Kronecker delta. It can also be described

by δ(M−1) = −(M)−1δM(M)−1. The Christoffel symbol, on the other hand, will be
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transformed accordingly

Γλ
µν =

1

2
gλρ(∂µgρν + ∂νgµρ − ∂ρgµν)

=
1

2
(ηλρ − hλρ)(∂µhρν + ∂νhµρ − ∂ρhµν)

=
1

2
(∂µh

λ
ν + ∂νh

λ
µ − ∂λhµν)

Let’s try and do something similar for the Ricci tensor.

Rκ
λµν =∂µΓ

κ
νλ − ∂νΓ

κ
µλ + Γκ

µρΓ
ρ
νλ − Γκ

νρΓ
ρ
µλ

=
1

2
∂µ(∂νh

κ
λ + ∂λh

κ
ν − ∂κhνλ)−

1

2
∂ν(∂µh

κ
λ + ∂λh

κ
µ − ∂κhµλ)

=
1

2
∂µ∂λh

κ
ν −

1

2
∂µ∂

κhνλ − 1

2
∂ν∂λh

κ
µ +

1

2
∂µ∂

κhµλ

Rλν ≈1

2
∂λ∂µh

µ
ν − 1

2
∂µ∂

µhνλ − 1

2
∂λ∂νh

µ
µ +

1

2
∂ν∂µh

µ
λ

=∂µ∂(λh
µ
ν) −

1

2
□hνλ − 1

2
∂ν∂λh

ρ
ρ

R ≈ηλνRλν ≈ −□hλλ + ∂µ∂νh
µν

where □ = ∂µ∂
µ. Therefore the linearized Einstein field equation becomes

Gµν ≈ Rµν −
1

2
ηµνR

thm. Another way of expressing this statement is by contracting the field equations by gµν .

We obtain

R− 1

2
DR =

(2−D)

2
R = 8πGTµ

µ

assuming that D ̸= 2,

R =
16πG

2−D
Rµ

µ

and

Rµν = 8πG(Tµν +
gµν

2−D
T λ
λ )

16.2 Gauge Symmetry

def. General covariance is a central principle of general relativity. It states that for an

arbitrary coordinate transformation is always possible (Gauge symmetry). Note that

coordinate trnasformations are also called diffeomorphisms.

note. We later learn that if we utilize the gauge choice, we can obtain

∂µh
µ
ν − 1

4
∂νh

µ
µ = 0
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simplifying the equation above as

Rµν = −1

2
□hµν

with Tµν = 0 in vacuum, the Einstein field equations predict gravitational waves by

□hµν = 0

def. There are two perspectives regarding general coordinate transformations. The first is

changing the coordinate system,
xµ → x′µ(x)

∂µ → ∂′µ =
∂xν

∂x′µ
∂ν

Φ(x) → Φ′(x′) = Φ(x)

which is a passive transformation. There are also active transformations, where
xµ → xµ

∂µ → ∂µ

Φ(x) → Φ′(x) = Φ(x′(x))

17 Lecture 17

By looking into how transformations would transform under active transformations, we

arrive at the Lie derivative which is another covariant version of the derivative.

17.1 The Lie Derivative

recall. Last class, we mentioned the two sides of a diffeomorphism (a coordinate transfor-

mation that is both ways differentiable), passive and active. Consider the following

transformation xµ → x′µ(x). A tensor would transform like the following

Tµ
ν (x) → T ′µ

ν (x′) = || ∂x
∂x′

||w ∂x
′µ

∂xρ
∂xσ

∂x′ν
T ρ
σ (x)

This would be called the passive aspect of a diffeomorphism. An active aspect of a

diffeomorphism would be when an actual event would change its coordinates. The

partial derivatives would remain the same, as we would be using the same coordinate

system. The tensor would transform as follows:

Tµ
ν (x) → T ′µ

ν (x) = ||∂x
′

∂x
||w ∂x

µ

∂x′ρ
∂x′σ

∂xν
T ρ
σ (x

′)

ex. Consider the following scalar transformation, ϕ(x) → ϕ′(x) = ϕ(x′).
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def. Infinitesimal transformation where fµs=0(x) = xµ and

ξµ(x) =
dfµs (x)

ds
|s=0 = δxµ

now consider the transformation

xµ → x′µ = fµs (x) = xµ + s
dfµ

ds
|s=0 +O(s2) = xµ + sξµ(x) + θ(s2)

xµ → x′µ ≈ xµ + ξµ(x) = xµ + δxµ

In this process, how much would the transformation themselves transform?

∂x′µ

∂xν
≈ ∂

∂xν
(xµ + ξµ) = δµν + ∂νξ

µ

∂xµ

∂x′ν
≈ ∂

∂x′ν
(x′µ − ξµ(x′)) = δµν − ∂νξ

µ

thus 
δ
(∂x′µ
∂xν

)
= ∂νξ

µ

δ
( ∂xµ
∂x′ν

)
= −∂νξµ

note. we used

x′ ≈x+ ξ(x)

x ≈x′ − ξ(x) = x′ − ξ(x′)

ξ(x′) ≈ξ(x+ ξ) = ξ(x) + ξλ∂λξ

We conclude that in passive diffeomorphisms, δϕ = 0 and for active diffeomorphisms,

δϕ = ξµ∂µϕ(x), using ϕ(x+ ξ) = ϕ(x) + ξµ∂µϕ(x).

thm. What is the variation of the determinant? Note that δ||M || = ||M ||Tr(M−1δM).

δ||∂x
′

∂x
|| = ||∂x

′

∂x
|| = ||∂x

′

∂x
|| ∂x

µ

∂x′ν
δ
(∂x′ν
∂xµ

)
|s=0 = ∂µξ

µ

thus for a whole tensor, the passive variation becomes

δpassiveT
µ
ν = −w∂λξλTµ

ν + ∂ρξ
µT ρ

ν − ∂νξ
ρTµ

ρ

while the active variation becomes

δactiveT
µ
ν = +w∂λξ

λTµ
ν − ∂ρξ

µT ρ
ν + ∂νξ

ρTµ
ρ + ξρ∂ρT

µ
ν

The last term of the active variation is called the transport term while the second
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and third term together are called the angular term. The first term is simply the

weight term. We also denote this variation as the Lie derivative

LξT
µ
ν

The derivative can be generalized like the following

LξT
µ1···µp
ν1···νq = ξρ∂ρT

µ1···µp
ν1···νq −

p∑
i=1

∂ρξ
µiT ···ρ···

ν1···νq +

q∑
j=1

∂νjξ
ρT

µ1···µp
···ρ··· + w∂ρξ

ρT
µ1···µp
ν1···νq

A surprising fact is that the derivative is covariant, and the above equates to

= ξρ∇ρT
µ1···µp
ν1···νq −

p∑
i=1

∇ρξ
µiT ···ρ···

ν1···νq +

q∑
j=1

∇vjξ
ρT

µ1···µp
···ρ··· + w∇ρξ

ρT
µ1···µp
ν1···νq

If insert Christoffel symbols, they all cancel out. Observe that

= first row +

p∑
i=1

(
ξρΓµi

ρσ − Γµi
σρξ

ρ
)
T ···σ···
ν1···νq −

q∑
j=1

(
ξρT σ

ρνj − Γσ
νjρξ

ρ
)
Tµ1···
σ···

− wξρΓσ
ρσT

µ1···µp
ν1···νq + wΓρ

ρσξ
σTµ1···

ν1···

rmk. An important property of the Lie derivative is that it satisfies the Leibniz rule,

Lξ(TS) = (LξT )S + T (LξS)

The Lagrangian of a particle is given as

L(Fµν , gµν) = −1

4

√
−ggµνgρσFµρFνσ = −1

4
F 2

it is a scalar density, with

δactiveL = LξL = ∂µ(ξ
nL)

prop. Consider the Lagrangian of a particle,

Lparticle = −m
√
−gµν(x(τ))ẋµ(τ)ẋν(τ)

the infinitesimal displacement becomes

ds2 = gµν(x)dx
µdxν

18 Lecture 18

We investigate the Killing equation, which is an equation that seeks vectors such that a

– 51 –



metric’s Lie derivative is zero. We discover these vectors to imply symmetries within space-

time.

18.1 The Killing Equation

recall. Last class we have learned the Lie derivative.

Lξgµν =ξλ∂λgµν + ∂µξ
ρgρν + ∂νξ

ρgµρ

=ξλ∇λgµν + (∇µξ
ρ)gρν + (∇νξ

ρ)gµρ

=0 +∇µ(ξ
ρgρν) +∇ν(ξ

ρgµρ)

=∇µξν +∇νξµ = 2∇(µξν)

The note that the derivative is covariant.

def. We define the Killing equation as the following Lie derivative being vanishing.

0 = Lξgµν = ∇µξν +∇νξµ

The equation is what we need to solve for a given metric (background) to obtain its

symmetry. Then, each solution ξµ (which we call killing vectors) corresponds to a

certain symmetry.

def. Noether current (conserved) is defined as the contraction of the energy-momentum

tensor with the killing tensor.

Jµ =Tµ
ν ξ

ν

The following quantity has a tensor density of 0. Note that

∇µJ
µ =∇µ(T

µ
ν ξ

ν)

=(∇µT
µ
ν )ξ

ν + Tµν∇(µξν) = 0

∂µ(
√
−gJµ) =0

We have used the Leibniz rule and the fact that Tµν = T (µν). As the divergence is

zero, the current is conserved. We thus identify that there is a corresponding current

that is conserved for each Killing vector.

rmk. If gµν is independent of a certain coordinate, e.g. t = x0, ξµ∂µ = ∂t is a killing vector,

and ξµ = (1, 0, 0, 0) is a constant vector. Vertifying is trivial.

Lξgµν =ξρ∂ρgµν + 0 + 0 = ∂tgµν = 0

We can see how energy is given as

E =

ˆ √
−gJ0 dx3 =

ˆ √
−gT 0

0 dx
3
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while the Noether charge is given as

Qξ =

ˆ √
−gT 0

ν ξ
ν dx3

recall. For a flat metric, gµν = ηµν . We now try to solve the Killing equation.

0 =∂µξν + ∂νξµ

0 =∂λ∂µξν + ∂λ∂νξµ

=∂λ∂µξν + ∂ν∂λξµ

=∂λ∂µξν − ∂ν∂µξλ

∂λ∂µξν =− ∂λ∂νξµ = ∂ν∂µξλ

∂µ∂λ∂ν =− ∂µ∂νξλ = 0

thus, 0 = ∂µ∂νξλ and ξµ must be linear in xλ. We have

ξµ =Cµ
ν x

ν + Cµ

ξµ =Cµνx
ν + Cµ

∂λξµ =Cµλ

The Killing equation becomes Cµλ + Cλµ = 0 and Cµλ = C[µλ] = −Cλµ, and

ξµ = Cµ
ν x

ν + Cµ

where Cµν = −Cνµ and Cµ are constant. The prior are the Lorentz symmetries

while the latter are the translational symmetries, combining to become the Poincare

symmetries.

recall. We return to the linearized Einstein field equations. gµν ≈ ηµν + hµν . The inverse

metric satisfies gµν ≈ ηµν−hµν , where hµν = ηµρηνσhρσ. Then the Christoffel symbol

became

Γλ
µν =

1

2
ηλρ(∂µhρν + ∂νhµρ − ∂ρhµν)

=
1

2
(∂µh

λ
ν + ∂νh

λ
µ − ∂λhµν)

The curvature tensor approximately becomes

Rκ
λµν ≈∂µΓκ

νλ − ∂νΓ
κ
µλ

≈1

2
∂µ(∂νh

κ
λ + ∂λh

κ
ν − ∂κhλν)−

1

2
∂ν(∂µh

κ
λ + ∂λh

κ
µ − ∂κhλµ)

≈1

2
∂µ∂λh

κ
ν −

1

2
∂µ∂

κhλν −
1

2
∂ν∂λh

κ
µ +

1

2
∂ν∂

κhλµ
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Contracting the above,

Rλν =
1

2
∂λ∂µh

µ
ν − 1

2
□hλν −

1

2
∂ν∂λh

κ
κ +

1

2
∂ν∂

κhκλ

=− 1

2
□hλν −

1

4
∂ν(∂λh

κ
κ − 2∂κhκλ)−

1

4
∂λ(∂νh

κ
κ − 2∂κhκν)

lastly,

R =− 1

2
□hλλ − 1

4
□hκκ +

1

2
∂µ∂νh

µν − 1

4
□hκκ +

1

2
∂µ∂νh

µν

=− 1

2
□hλλ − 1

2
□hκκ + ∂µ∂νh

µν

=−□hλλ + ∂µ∂νh
µν

thm. Consider the diffeomorphism
gµν → δgµν = Lξgµν

gµν → gµν + Lξgµν

ηµν + hµν → ηµν + hµν + Lξ(η + h)µν = ηµν + hµν + Lξηµν + Lξhµν

Assume that ξ and h have the same orders of magnitude in order to ignore the last

term. We arrive at

hµν → hµν + Lξηµν = hµν + ∂µξν + ∂νξµ

def. The harmonic gauge is given as

∂µh
ν
ν − 2∂νh

ν
µ = 0

The gauge freedom is given as

hµν →hµν + ∂µξν + ∂νξµ

hνν →hνν + 2∂µξ
µ

∂λhµν →∂λhµν + ∂λ∂µξν + ∂λ∂νξµ

∂λh
λ
µ →∂λh

λ
µ + ∂µ∂νξ

ν +□ξ · ··
∂µh

ν
ν − 2∂νh

ν
µ →∂µh

ν
ν − 2∂νh

ν
µ − 2□ξµ

19 Lecture 19

recall. Last class, we have learnt the linearised Einstein equations by putting g ≈ η+h with

Rµν = −□hµν/2. We considered the following diffeomorphism

δhµν = Lξhµν = ∂µξν + ∂νξµ
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resulting in

δ(∂λh
λ
µ − 1

2
∂µh

λ
λ) = −2□ξµ

we have the following transformation

holdµν → hnewµν = holdµν + ∂µξν + ∂νξµ

but

∂λh
newλ
µ − 1

2
∂µh

newλ
λ = 0 = ∂λh

oldλ
λ − 1

2
∂µh

oldλ
λ −□ξµ

recall. We know the following facts from electrodynamics. If an equation is given like the

following,

□ψ(x0, x⃗) = 4πρ(x0, x⃗)

the solution is given as

ψ(x0, x⃗) =

ˆ
ρ(x0 − |x⃗− x⃗′|)

|x⃗− x⃗′|
dx′3

We previously saw that the following is equivalent to the field equations

Rµν −
1

2
gµνR =8πGTµν

(1− R

2
)R =8πGT λ

λ

R =
16πG

2−D
T λ
λ

Rµν = 8πG(Tµν +
gµν

2−D
T λ
λ )

□hµν ≈ −16πG(Tµν +
ηµν

2−D
T λ
λ )

we know that hµν is of the same order as 8πGTµν as it is the variation from flat space.

The above equation’s solution is given as

hµν(x
0, x⃗) = 4G

ˆ Tµν −
1

2
ηµνT

λ
λ

|x⃗− x⃗′|
dx3
∣∣
x0
ret=x0−|x⃗−x⃗′|
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vertifying that it satisfies the gauge, we find

hµµ =4G

ˆ −T λ
λ (x

0
ret, x⃗

′)

|x⃗− x⃗′|
dx3

∂λh
λ
µ − 1

2
∂µh

λ
λ =∂λ(h

λ
µ − 1

2
δλµh

ν
ν)

T λ
µ − 1

2
δλµT

ρ
ρ − 1

2
δλµ(−T ρ

ρ ) =T
λ
µ

∂λ

ˆ
T λ
µ (x

0 − |x⃗− x⃗′|, x⃗′)
|x⃗− x⃗′|

dx3 =

ˆ
∂0T

0
µ(x

0 − |x⃗− x⃗′|, x⃗′)
|x⃗− x⃗′|

+
∂′iT

i
µ(x

0 − |x⃗− x⃗′|, x⃗′)
|x⃗− x⃗′|

dx3

+ (terms that vanish at infinity)

20 Lecture 20

recall. Last class, we linearized the field equations into

□hµν = −16πG

c2
(Tµν +

ηµν
2−D

T λ
λ )

and solved for the variation, obtaining

hµν(x
0, x⃗) = 4G

ˆ Tµν(x
0 − |x⃗− x⃗′|, x⃗′)− 1

2
ηµνT

λ
λ (x

0 − |x⃗− x⃗′|, x⃗′)

|x⃗− x⃗′|
d3x′

under the gauge

2∂λh
λ
µ = ∂µh

λ
λ

Lets try and repeat the calculations. The Christoffel symbols became

Γλ
µν =

1

2
gλρ(∂µgρν + ∂νgρµ − ∂ρgµν) ≈

1

2
(∂µh

λ
ν + ∂νh

λ
µ − ∂λhµν)

Given the geodesic equation,

0 = ẍλ + Γλ
µν ẋ

µẋν

we approximate it using the Christoffel symbol above to obtain

0 ≈ ẍλ + (∂µh
λ
ν − 1

2
∂λhµν)ẋ

µẋν

rearranging,

ẍλ =
1

2
(∂λhµν − 2∂µh

λ
ν )ẋ

µẋν
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For a non-relativistic/slow moving particle, we know that the front term is dominant,

i.e., ẋµ = (ẋ0, ˙⃗x) ≈ (c, v⃗) ≈ (c, 0), |v⃗| << c. Then, we get

ẍλ ≈ c2

2
∂λh00 − c2∂0h

λ
0 ≈ c2

2
∂λh00 − c

∂

∂t
hλ0

and

ẍλ ≈ c2

2
∂λh00

implying

¨⃗x =
c2

2
∇h00

From the above, we try to find h00, supposedly

h00 =
4G

c2

ˆ
T00 +

∑3
i=1 Tii

|x⃗− x⃗′|
d3x′

using

T λ
λ =T 0

0 + T i
i = −T00 + T i

i

T00 −
1

2
η00T

λ
λ =T00 +

1

2
(−T00 + T i

i ) =
(T00 +

∑3
i=1 Tii)(x⃗

′)

2

Finally,

¨⃗x ≈ G∇
ˆ

T00 +
∑3

i=1 Tii
|x⃗− x⃗′|

d3x′

In the Newtonian limit, with Newtonian gravity, we would expect

m¨⃗x = −∇V

and
V

m
= −G

ˆ
ρ(x⃗′)

|x⃗− x⃗′|
d3x′

thus we find the mass density to be

ρ(x⃗) = T00 +

3∑
i=1

Tii

thm. How does light behave under such pertubations of the metric? We know that light

behaves like the following

ẋµẋν(ηµν + hµν) = 0

with

ẋµẋνgµν =


0 light

−1 massive particle

1 tachyon
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let ẋµ = (v, v, 0, 0) which would describe light moving along the x-direction or gen-

erally ẋµ = (v, vn̂), for a unit vector n̂ · n̂ = 1. We state without derivation that

when we plug this into the linearized field equations, we obtain the following met-

ric. Consider the solar system test in a sphercal symmetric case. PPN stands for

parametrised-post-newtonian analysis.

ds2 =
(
− 1 +

2GM

r
+ 2βPPN

(GM
r

)2
+ · · ·

)
dt2 +

(
1 + 2γPPN

GM

r
+ · · ·

)
dx⃗ · dx⃗

According to experiment, we know that βPPN ≈ 1 and γPPN ≈ 1, which is exactly

satisfied by the Einstein field equations with large precision.

rmk. Finding the average of the trace of the pertubtation,

1

3
h i
i =

1

3
(T i

i − 3

2
T λ
λ )

=
1

2
(T00 −

1

3
T i
i )

we know that if T i
i ≈ 0 then h00 ≈ h i

i and that γPPN ≈ 1.

21 Lecture 21

recall. We calculate the Laplacian of the potential function like the following

∇2

ˆ
ρ(x0 − |x− x′|,x′)

|x− x′|
d3x′

=∇ ·
ˆ

∇
(ρ(x0 − |x− x′|,x′)

|x− x′|

)
d3x′

=∇ ·
ˆ

∇ρ(x0 − |x− x′|,x′)

|x− x′|
+ ρ(x0 − |x− x′|,x′)∇ 1

|x− x′|
d3x′

=∇ ·
ˆ

∇(x0 − |x− x′|)∂0ρ(x0 − |x− x′|,x′)

|x− x′|
− (x− x′)ρ

|x− x′|3
d3x′

=−∇ ·
ˆ

(x− x′)
[∂0ρ(x0 − |x− x′|,x′)

|x− x′|2
+
ρ(x0 − |x− x′|,x′)

|x− x′|

]
d3x′

=∇ ·
ˆ

− (x− x′)

|x− x′|2
∂0ρ(x

0 − |x− x′|,x′) + ρ(x0 − |x− x′|,x′)∇ 1

|x− x′|
d3x′

=− 4πρ+ ∂20

ˆ
ρ

|x− x′|
d3x′

Thus, we can conclude

□
ˆ

ρ(x0 − |x− x′|,x′)

|x− x′|
d3x′ = −4πρ

thm. Today, we’re going to obtain a spherically symmetric vaccum solution to the gravi-
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tational field equations.

Gµν = 8πGTµν

As we learnt the Lie derivative, we know that such a solution should satisfy

LLagµν = 0

for a ∈ 1, 2, 3. L1, L2, L3 are nothing other than angular momenta, given by

L3 =
∂

∂ϕ
= Lµ

3∂µ = Lϕ
3∂ϕ

and

LLaTµν = 0

when you impose all the following
LL1gµν = 0

LL2gµν = 0

LL3gµν = 0

note.

Lvgµν = vλgµν + ∂µv
λgλν + ∂νv

λgµλ

thm. You obtain the following form of proper displacement anzatz

ds2 = A(t, r)dt2 + 2B(t, r)dtdr + C(t, r)dr2 +D(t, r)(dθ2 + sin2 θdϕ2)

We can reform the anzatz into

ds2 =Ã(t, r)[dt+ dα(t, r)]2 + β(t, r)dr2 +D(t, r)(dθ2 + sin2 θdϕ2)

=Ã[d(t+ α)]2 + · · ·
=Ãdt2new + βdr2 +D(dθ2 + sin θdϕ2)

where tnew = t+ α(t, r). Expanding,

=Ã(dt+ dt∂rα+ dr∂rα)
2 + βdr2

=Ã((1 + ∂tα)dt+ ∂rαdr)
2 + βdr2

=Ã(1 + ∂tα)
2dt2 + 2Ã(1 + ∂tα)∂rαdtdr + [Ã(∂rα)

2 + β]dr2

this implies that 
A = Ã(1 + ∂tα)

2

B = Ã(1 + ∂tα)∂rα

C = Ã(∂rα)
2 + β
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Logic here is faulty, but we want to conclude that we don’t need a cross term. We can

also go into coordinate where D = r2new. In this new coordinate system, the proper

distance becomes

ds2 = A(t, r)dt2 +B(t, r)dr2 + r2(dθ2 + sin2 θdϕ2)

another popular choice is

ds2 = C(t, r̃)dt2 +B(t, r̃)[dr̃2 + r̃2(dθ2 + sin2 θdϕ2)]

the terms in the square brackets interestingly are spatically flat, and we call them

isotropic coordinates in systems with spherical symmetry.
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