Digital Instrument Control Using Computer Programming

Sejin Jeon
Sogang University Physics Department
Student 1D 20231262

(6th Week Post-Experiment Lab Report)

I. PRACTICE 1

A. Writing Code in the Console Tab

In the first practice, we were asked to use the programs provided to use the AFG2021
(function generator). In the first part of the first practice, we were asked to simply insert
the code in the console tab and observe what happens. There were a total of 14 lines of code
to be tested.

1.

The first code provided simply imported the PyVISA package, a Python package that
enables measurement instrument control.

In [1]: import pyvisa

. The second code assigns the resource manager class in the PyVISA package to the variable

” ”

rm

In [2]: rm = pyvisa.ResourceManager()

. The third code uses the "list resources” function in the resource manager class, printing

out all possible addresses for the instrument that we want to control.

In [3]: print (rm.list_resources())
('USB@: :0x@699: :0x0349: :CO12574: : INSTR",

. The fourth and fifth code allows us to identify the address of the digital instrument input.

The fourth code assigns the "open resource” function (of the resource manager class) with
the input being the computer’s connected devices to the variable ”inst”.

In [4]: inst=rm.open_resource('USB@: :0x0699::8x0349::C012574: :INSTR")

. The fifth code uses the the "query” function, which takes the opened resource lists that we

created above and gives the identification of these devices. The particular device with the
identification ” AFG2021” is the one we want to use as the VISA address for the AFG2021
function generator.

In [5]: print(inst.query(*IDN?"))
TEKTRONIX,AFG2021,C012574,5CPI:99.8 FV:1.1.9

The implementation

of the codes above in the actual practice process looked like the
following.

Source (Console | Object

L S T

Kaged by Anaconda, Inc. | (main, Dec 15 2023, 18:05:47) [MSC v.1916 64 bit (AMDG4)]
", “credits® or "license" for more information.

== An enhanced Interactive Python.

ra = pyvisa.ResourceManager()

print (rm.list_resources())

ex06: :C812577::INSTR", *ASH ISTR", 'ASRL2: :INSTR")
: tnst.

.0pen_resource(‘USB0: :6x06: ::€012577: INSTR ")
n [5]: print(inst.query(*ION:
||| TEKTRONIX, AF62021, 012577, 5CP1:99.0 FV:1.1.9

In [6): inst.urite('SOURCe1:VOLTage:LEVel : IMMeaiate:OFFSet 500av")

In [7): dnst.urite(‘OUTPUTI:STATE ON')
| 18

In (8): dnst.write(‘OUTPUTI:STATE OFF ")
<(2]: 19

In [9: dnst.urite('SoURCel:FUNCE{on: SHAPe SQuare’)

In [10): dnst.urite('SOURCe1:VOLToge: LE\
) ¢ o Ihttediate: AMPLitude 1vPP*)
I (311 dnst.write('SOURce1:VOL age:LEVeL : Ihteatate: ANPLitude 1vpp
In (12: dnst. e e1:F tFIXeq
4nst write(SoURce1: AQuencyiFIXed Soom ')

In (13); |

IPyihoh Conselal History
conda (Python 3,11,7) ¢, Completions: conda v LSP: Python Line 22, Col I UTF-§ CRLF

Racauzay Apea @ 2?
2024

FIG. 1: Code used in practice.

6. From the 6th code line, we controlled the instrument, observing the effects of each code on

the instrument. The 6th code line of the listing changed the function shape of the function
generator to a DC output, like the following.

In [6]: inst.write('SOURcel:FUNCtion:SHAPe DC')
out[6]: 27

7. The Tth code line had the same effect of the code above.

In [7]: inst.write('SOURL:FUNC:SHAP DC')
Out[7]: 20

8. The 8th code line set the offset level of the first source, resulting in the function generator
to show an interface like the following.

In [9]: inst.write('SOURcel:VOL
Out[9]: 46

FFSet S5@emv')

opl 1.000vm
Offset 500y

9. The 9th code line turned the first output on, resulting in the function generator to show
an interface like the following.

In [10]: inst.write(OUTPUT1:STATE ON')
Out[10]: 18

Ampl Vpp
Dffset S00my

10. The 10th line of code did the opposite of the 9th line, turning the output off.

In [11]: inst.write('OUTPUT1:STATE OFF')
out[11]: 19

11. The 11th code line set the offset level of the first source to 0 mV.

In [12]: inst.write('SOURcel:VOLTage:LEVel:IMMediate:0FFSet BmV')
Oout[12]: 44

12. The 12th line of code creating the made the function generator to generate a function
shape of a square, implemented as follows.

In [13]: inst.write('SOURcel:FUNCtion:SHAPe SQUare')
out[13]: 31

In [14]: inst.write('SOURcel:VOLTage:LEVel:IMMediate:AMPLitude 1VPP')
out[14]: 46

13. The 13th line of code made the amplitude of the signal to have a peak-to-peak value of
1V, implemented as follows.

14. The 14th line of code creating the made the function generator to generate a function of

a frequency of a fixed 500 kHz.

In [15]: inst.write('SOURcel:FREQuency:FIXed 50@kHz"')
Out[15]: 32

B. Defining a Class and Using a Generated Object

Using the file ” AFG2021_class.py”, a certain class ”AFG2021” was used to turn the function
generator on and off. The results can be seen below.

Tek
f A ot
Freg 500,000 000 000k

Source Console |-/ Object

"C GMZ SE A g A

C. Creating a Graphical User Interface (GUI) Using PyQt and Qt Designer

In the third part of the first practice, we used the code in the files ? AFG2021 UI” and
” AFG2021_pyqt.py” to create a GUI interface.

II. PRACTICE 2
A. Writing Code in the Console Tab

In the second practice, the same instructions for the practice above was repeated, where the
lines of the code let us measure the amplitude and the voltage using the Keithley DMM6500
(multimeter).

€ Cwome Fe it Vew Hstory &

000 © momwmmus

B. Defining a Class and Using a Generated Object

After the first lines of code above, the file ”Keithley DMM6500_class.py” was used to change
the mode of the measurements. The ”if” argument was successfully used.

Prant (rm. List_resources

E61:6x6500: 1045700772 THSTR' , *ASRLL: 1 TuSTR', *ASRL2: :INSTR")

| In [441: Keithley DMNGS500_class. Keithley6son(‘usso: :6

|
| In [151: Keithley DHMG500_class. Keithley6soa()
ast):

| Traceback (sost: recent call 1

l| cn In[15], line 1

S500_class. Keithle
— ¥ Leysseo(y
= o g i ! .
t debuffert Noseript L Keithley6500._init_() missing 1 required positional argument: ‘VISA address’
USBTMC. lefbuffer! mmws i ;i

A 5 3 8 V I [35]: control-Keithley_DM16500_class. elthleyss9o soo: xpse: 1056530
+(||| In [47]: control.
J 0 0 0 .)

—

ceback (mo
Cell In(17], line 1
control. re()

Keithleys590.0C_neasure() missing 1 required positional argument: ‘mode’

|
| P

‘H In [16]: controlsKeithley DMMG500_closs.Keithley6500(‘Us50:

|

| Tn [27]: control.DC_measure()

{§] Traceback (most recent call last):

Cell Tn[17], line 1
controL..0C_measure()
- ing 1 rec si argument: “mode”
Wefbufter! mmma No Script Jpetrror: Keithley6500.0C_measure() missing 1 required positional arguse

Front

[‘ B i
()() 00(10) l |A o e et
g : 1 T, Kt

control.0C_measure(voltage)
or: name *voltage' is not defined
ntrol..0C_measure(“voLtage")
380195€-05\n"

n [20]: comtrol.oC_measure(**)

insert voltage or current
ontrol..OC_measure(‘current)
9.072955€-12\n"

Q@ 26°c aH= =8

[1] THE SOGANG UNIVERSITY PHYSICS DEPARTMENT. Experimental physics 1 manual. “Creating
a Communications and Remote Control Environment (Python 1)”.

