Sejin Jeon
Sogang University Physics Department
Student ID 20231262

(9th Week Post-Experiment Lab Report)

Digital Instrument Control Using Computer Programming 2

I. PRACTICE 1 (DATA & ANALYSIS)
A. U3-HV (DAQ Board)

In this first practice of the session, presentation slides pre-
sented to us were used to test both the analog and digi-
tal input/outputs. At first, the “U3_code.py” was opened
and each line of code was ran. Here is the complete list
of codes that were ran.

1. Analog input : The function generator’s output
was connected with the U3 DAQ board, and AINO
was connected with GND. The offset of the DC
voltage was varied to see how the response would
change. As seen in the figure, the following two lines

e 1 ainvay

| Sent: Ue=d. getp

| t[exy IN(o!
\RESpons b, oxfs, o ()

X X2, o
s 2 8X0, oxp, g,
2 OB, 03, 0xa, oxy ol @KL, 10,
| In 1281 printagnva; N
| 1-4159679909959905 ¢
In [25]: print(ai,
4 nv;
415957939999999A T

[26]: ainValue=d
1 =d.getAIN(B)
nt: [0x1b, Oxf8, Ox2, exi
) s 2, @, 0x20, oxo, 0x0, @x1, 0xe,
esponse: [Oxla, 0xf8, ox3, 0x0, 6x1d, ex1, 6x0, e, ou0, wxzs, oura, 0]

n [27]: print(ainvalue)
.0472

5

0x26, OxFF, Oxif]
x0, 0x0, 0x0, 6x01

FIG. 1

of code accurately gave the voltage values that were
input into the system using the function generator.

ainValue-d.getAIN(@)
print(ainValue)

FIG. 2

2. Analog output : This time, a certain voltage was
set through the code (thus the output) using the
code lines provided. The implementation looked
like the following. As seen in the figure, following
three lines of code accurately changed the voltage

bits=d.voltageToDACBits(vol
d.getFeedback(u3.DAC16(9, bits))

al

Wl In [171: bits=d.voltageToDACBits(volts=Volts, dacNumber = O, is16Bits = True)

jetFeedback(u3.DAC16(0, bits))
, 0x0, @x0, 0x26, OXGF, €x67]
: [Oxfa, OXf8, Ox2, OX0, Ox0, €x0, 0x0, €x0, 0x0, 0x0]
ne]

FIG. 4

voltage output of the DAQ board, and the multi-
meter detected this output of voltage.

Volts

Lts=Volts, dacNumber

FIG. 5

3. Digital input : The way that the digital input was

different with the analog input was that it was able
to address signals in a more discrete way, indicating
whether the input was there or not through the
numbers “0” and “1”. When the DC voltage offset
was set as 2 V, the command in the manuel gave
a ”1”, while when the DC voltage offset was set as
0 V, the command in the manuel gave a “0”. The
two lines of the code used can be seen in the figure
below, while the results of the experiment can be
seen below that.

DIn=d.getDIState(ioNum

print(DIn)
FIG. 6
In [60]1: d.setDOState

Sent: [0xa0, Oxf8,
Response: [@xfa,

(ioNum=6, state=g)
0x3, 0x0, @xad, 0x0, 0x0, Oxd, 0

86, 0xb, 0x6,
OXf8, 0x2, 0x0, 0x0, 0x0, 60, 0x0, 610, on0) .
In [61]: d.getDIState(ioNum=6)
Sent: [@x1f, Oxf8, 0x3, 0x0, 0x23, 0x0, 0x0, Oxd, 0x6, Oxa, 0x6, Ox0]
Response: [@xfa, Oxf8, Ox2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x9, 0x0]

[611: @

\

In [621: print(DIn)
1

: DIn=d.getDIState(ioNum=6) ~
1sreln[ts}]\:a;gi, ex%s, @x3, 0x0, @x23, €x0, 0x0, Oxd, 06, Oxa, 05, O« 7]

x8, 6x0]
| Response: [@xfa, Oxf8, 0x2, @x0, 0x0, ox0, 0x0, 0x0,
\

n [641: print(DIn)

o o
onda ®ython 311 e Completions p: Python Line 0. Col I UTF L
o hletions: conda ¥ LSP: Pyt v
\da (Pyth i e et o =5

a (Py V ‘

A i

o023~ 14081616~

10m|

omv|

- 10V

. Digital output : Similar to the relation between
the digital and analog and digital input, the dig-
ital output set the state of the digital output in
descrete ways, where setting the state “0” sent a
direct current of 0 volts while the state “1” sent a
direction current of 3 volts both measured by the
multimeter. The line of code used and the results
of the practice can be seen in the images below.

d.setDOState(ioNum=6, state=0)

FIG. 9

8| 1n [68]: print(DIn)

e

| In [69]: print(DIn)
]

|

| 1n [70]: DIn=d.getDIState(ioNum=6)
Sreniz [OX1F, OxF8, Ox3, Ox0, @x23, Ox0, 0x0, Oxd, 0x6, Oxa, @x6, 0x0]
Response: [@xfa, OXFB, @x2, 00, €x0, 0x0, 0x0, @x0, 0x0, €x0]
In [71]: print(dIn)
D)
.setDOState(iolum=6, state=0)
, OxF8, Ox3, x0, xad, 0x0, Oxd, Ox86, @xb, 0x6, €x0]
: [exfa, Oxf8, Ox2, 00, X, 0XO, 0X0, X, X0, €x8]
. setDOState(
, exf8, 0x3 @x0, 0xd, 0x86, @xb, 0x86, 0x0]
[exfa, @xfs, X0, 0X0, Ox8, 0x0, @x0]

-0)
8, Ox3, €x0, Oxad, Ox0, @x0, Oxd, OxB6, Oxb, @x6, OxA]
Oxf8, 0x2, 0x0, 0X0, 6X0, OX0, €x0, X0, 0x0]

[iPsthon Censale! [History

0 14c o7

FIG. 10

& SENSE
\ocal defbuffert ™ NoScript ~~ Q4WRE
DCVOLTAGE: Front

0230366mV
e

r e
o ™

FIG. 11

FIG. 12

II. PRACTICE 2 (DATA & ANALYSIS)
A. AFG 2100 and U3-HV (Graphing Program)

In the second practice, the basic file “U3_code.py” was
used as a basic file for the python code, and the file
“AFG_Keithley_pyqt_matplot.py” was used to create a
program that would change the DC output voltage of the
AFG 2100 and measure this changed voltage and plot the
graph. The screenshots of the program can be seen below.
The major changes from the original code made were the
following:

1. import of the u3 package and initialisation
code. This enabled the Ul to fit the U3 rather than
the AFG function generator.

2. Changing the button click connection code
was also important, as these settings inherently
changed the buttons’ effects from initiating code
for the function generator to initiating code for the
Us.

3. Changing the instrument method defini-
tions. When changing the button click connection
code, it was also important to change the certain
definitions of the functions that were used.

Overall, the code drew the linear graph shown in FIG
16. The graph, however, shown a downwards plot rather
than an upwards plot, and this error along with other
aspects of the experiment will be dicussed further later
on.

temp.py x | AFG.US.pyqtmatplotpy x | AFG_Kelthley_pyat-matplotpy x

ort matplotlib.pyplot as plt

#from mpl_toolkits.mplot3d import Axes3 |

from matplotlib.backends.backend_qtSagg import FigureCanvasQTAgg as FigureCanvas # imported for graph
tplotlib.backends.backend_qtsagg inport NavigationToolbar2qr as mupu‘lmmw # imported for graph
yvisa

3 initiallization ##sss

d.debug = True
FigI0(FI0Analog=0xoF)

efreshButton. clicked. connect(: nnection_refresh)
selectButton. clicked. conne select_Clicked)

etButton. clicked. connect(seLf. set_Clicked

(5)
measureButton. clicked. connect(asure_Clicked)

runButton. clicked. connect (seLf. run_clicked)
closesutton. clicked. connect(self.close_Clicked)
xdota=[] # blank list create

ydata=(]

ig = plt.Figure((5,5))
cany igureCanva:

ata, 'ro’, labele"graph®)

FIG. 13

emp.py x | AFGU3.pygtmatplotpy x | AFG Keithley_pyqt-matplotpy x

combot
comboBox, addItens(seLf.ra. 1ist_resources())
~rm.open_resource(self. coaboBox. currentText())

elect Clicked(:

. it set. text()
t_offset(number)

ement=strllzeLf. Analog 4nput O]
ineEdit_measure. setText(measurement)

)
ecolor(‘white")
.set_title("my graph*)
legend()

for i, x in enumerate(Xvalues): i i
X in enumerate(Xvalues): # Here, i is index, x is the value in the list, actually any symbol can be used

I

(important)

‘UTPUT1:STATE ON'") |
OUTPUT1:STATE oFF")

ice1:VOLTage: LEVeL: Ibiediate:OFFset ()Y . format(volt))

FIG. 15

YRR IS P SRR | - |

my araph

FIG. 16

III. DISCUSSION

Throughout the experiment there were a few errors that
needed to be evaluated and there were also quite a few
improvements that could be made. They are listed as
paragraphs below.

The linear decent of the graph was a major error
in the code that was created, as there was suppose to
be a linear increase. This was a subtle problem in the

code that was made, and this problem was due to the
settings in the plotting program that was provided. This
was quickly fixed lated on.

Impedance of the multimeter led to quite a few prob-
lems, as the analog output didn’t correctly correlate to
the measurements made by the multimeter. This was
fixed by changing impedance of the multimeter, which
changed the impedance of the measurement device to
correctly calibrate to the signals sent.

[1] THE SOGANG UNIVERSITY PHYSICS DEPARTMENT. Exper-

imental physics 1 manual. “Creating a Communications
and Remote Control Environment (Python 2)”.

